INSPYRE 2018

Dr. Alessandra Malaroda

UNIVERSITY OF WOLLONGONG AUSTRALIA

https://www.surrey.ac.uk/events/20170425-medical-physics-talk

physics and medicine

Looking inside people: by using X-rays, magnetic resonance and ultrasound

https://www.surrey.ac.uk/events/20170425-medical-physics-talk

Understanding physiology: Positron Emission Tomography imaging

http://www.phas.ubc.ca/medical-physics

CENTRE FOR MEDICAL RADIATION PHYSICS

γ -ray vision

using radiation to peek inside bodies

> Alex Malaroda School of Physics & Centre for Medical Radiation Physics University of Wollongong malaroda@uow.edu.au

CENTRE FOR MEDICAL RADIATION PHYSICS

University of Wollongong & Centre for Medical Radiation Physics

UOW:

- top 2% universities in the world
- 3 international sites/partners: Dubai, Hong-Kong, Singapore
- Undergraduate and postgraduate program in physics and in medical radiation physics

CMRP: Largest medical physics group in Oceania and south-east Asia

Collaborators:

NASA Brookhaven National Labs (USA) Rutherford Labs (UK) CERN (Switzerland) INFN, Laboratori di Frascati (INFN)

> CENTRE FOR MEDICAL RADIATION PHYSICS

CENTRE FOR MEDICAL RADIATION PHYSICS

Dalla *strada costiera* to the *great pacific drive*

Where Modern Physics Meets Medicine

- Historic background and the discovery of the X-rays
 - Modern physics and medicine
 - Production of photons: X-rays and Radioactivity
 - The physics of the photons
- From X-ray projections to conventional tomography to computed tomography
- Emission tomography

٠

- The gamma camera
- Single photon emission tomography
- Positron emission tomography

CENTRE FOR MEDICAL RADIATION PHYSICS

5th Solvay international conference on Electrons and Photons (1927)

© Rare Historical Photos 2018 RareHistoricalPhotos.com

front row

Irving Langmuir, Max Planck, Marie Curie, Hendrik Lorentz, Albert Einstein, Paul Langevin, Charles-Eugène Guye, C.T.R Wilson, Owen Richardson.

middle row

Peter Debye, Martin Knudsen, William Lawrence Bragg, Hendrik Anthony Kramers, Paul Dirac, Arthur Compton, Louis de Broglie, Max Born, Niels Bohr.

back row

Auguste Piccard, Émile Henriot, Paul Ehrenfest, Édouard Herzen, Théophile de Donder, Erwin Schrödinger, JE Verschaffelt, Wolfgang Pauli, Werner Heisenberg, Ralph Fowler, Léon Brillouin.

> CENTRE FOR MEDICAL RADIATION PHYSICS

WHY MODERN PHYSICS?

Classical physics works

Cassini interplanetary trajectory

Modern Physics

The discovery of the X-rays

1895 First X-ray: Roentgen's wife hand

Roentgen observed highly penetrating radiation while studying cathode rays in tubes evacuated of air.

http://www.rfcafe.com/references/popular-electronics/x-raysoctober-1960-popular-electronics.htm

http://www.awesomestories.com/asset/view/ First-X-ray-1895-Anna-Bertha-Roentgen-s-Hand

UNIVERSITY

AUSTRALIA

OF WOLLONGONG

13

The evolution of medical imaging

The physics of imaging

- 1. Electrons decelerating in a material emit photons
 - X-rays are produced through the Bremsstrahlung effect
- 2. Unstable nuclei emit particles in order to become "stable":
 - Gammas, electrons, positrons, alpha particles
- 3. Photons interacting in a material can be:
 - Absorbed (photoelectric effect)
 - Deflected (change direction) but not losing energy (Rayleigh scatter)
 - Change direction, lose energy and free electrons (Compton scatter)
 - Pair production

Bremsstrahlung: production of photons

- Charged particles decelerated by the electric and magnetic field of a nucleus lose kinetic energy, which is converted into emission of photons (x-rays)
- The emitted photons can have energies between 0 and the maximum kinetic energy of the incident charged particle

Production of x-rays

- x-rays are produced by the deceleration of electrons in a target material (Bremsstrahlung):
- electrons are emitted by a filament (tungsten) heated at 2000 cond∞ accelerated towards a target (e.g. aluminium, tungsten or copper), the electrons are decelerated within the target and bremsstrahlung and characteristics (for the target material) x-rays are produced.
- The x-ray beam is than collimated (pre-patient collimation).
- The x-ray produced by an x-ray tube is a poly-energetic (polychromatic) beam with energies between 0 up to kVp keV.
- The kVp (kilovolt peak) is the maximum voltage applied across the x-ray tube and determines the maximum energy of the electrons impacting on the tube target and the maximum energy of the x-ray emitted.

Production of X-rays

- x-rays are produc (Bremsstrahlung):
- electrons@are@emil accelerated towar electrons are dec characteristics (fo
- The x-ray beam is
- The x-ray produce beam with energie
- The kVp (kilovolt | tube and determir the tube target an

Unstable nuclei: radioactivity

Radioactivity

- Gamma emission too much energy
- Alpha emission: too much mass
- Electron emission: too many neutrons
- Positron emission:
 too few neutrons

CENTRE FOR MEDICAL RADIATION PHYSICS

- Photoelectric effect
- Scatter:
 - Coherent
 - in-coherent scatter
- Pair production: e⁻ e⁺

Photoelectric effect

Characteristic X-rays

- Scatter:
 - Coherent
 - in-coherent scatter
- Pair production: e⁻ e⁺

Coherent scattering (Thompson scattering)

- Photoelectric effect
- Scatter:
 - Coherent
 - in-coherent scatter
- Pair production: e⁻ e⁺

Compton scattering

- Photoelectric effect
- Scatter:
 - Coherent
 - in-coherent scatter (Compton)
- Pair production: e⁻ e⁺

- Photoelectric effect
- Scatter:
 - Coherent
 - in-coherent scatter
- Pair production: e⁻ e⁺

 $E\downarrow\gamma \ge m\downarrow e\uparrow - c\uparrow 2 + m\downarrow e\uparrow + c\uparrow 2 = 2m\downarrow e\uparrow - c\uparrow 2 = 2 :$

(E_{γ} in medical imaging ~ 80-200 keV)

Attenuation of a photon

The photon can:

- Be transmitted with no interaction
- Be absorbed (photo-electric effect)
- Get scattered:
 - without losing energy (coherent scatter)
 - Losing energy (Compton scatter)
- Produce an e⁻ e⁺ pair

Which one of these processes is the most probable?

- depends on the *cross-section* of each process
- which depends on the: energy of the photon and the material of the target

 \leftrightarrow Δx

> MEDICAL RADIATION PHYSICS

Attenuation of photons

 A number N₀ of photons incident to an object can undergo photoelectric effect, scatter (coherent, Compton) or pair production (if E > 1.02 MeV)

$$N - N \downarrow 0 = \Delta N = - N \downarrow 0 \ \mu \Delta x \implies N = N \downarrow 0 \ e^{\uparrow} - \mu(E, material)^{\mathsf{N}} \Delta x$$

• The probability of N transmitted photons is proportional to the linear attenuation coefficient μ of the <u>material</u>

 $\mu = \mu \downarrow photoelectric + \mu \downarrow scatter + \mu \downarrow pair production$

 \leftrightarrow Δx Ν

Photon interaction modes

Relative importance of photon interaction modes for tissue, bone and NaI for incident photon of energies between 20 and 100 keV

(projection) radiography

٠

Image receptor (tim) Photons penetrating bissue cause fain to darken Photons absorbed by bone result in light areas on the radiograph

HGURE 1-8. Relative positions of x-ray tube, patient, and film necessary to make the radiograph shown. Bones tend to stop duagnostic x-rays, but soft itsue does not. This results in the light and dark regions that form the image.

- The transmission depends on the material traversed:
 - attenuation coefficient of bone > attenuation coefficient of soft tissue
 - attenuation coefficient of soft tissue > attenuation coefficient of air
 - → more photons attenuated by bone than soft tissue

In order to form an image, enough photons needs to be transmitted onto the film/detector

(projection) radiography

mammography

30

(destra).

mammography

Conventional tomography

Moving the detector with speed

 $v \downarrow detector = (H-h)/h v \downarrow Xrays$

Objects outside the focal plane will be blurred

CENTRE FOR MEDICAL RADIATION PHYSICS 4.4×

UNIVERSITY OF WOLLONGONG

AUSTRALIA

Dental panoramic

3D X-ray images

Io intensity of produced X-rays, I intensity of

I is the number of photons not attenuated in

• $-\ln\left(\frac{I}{I_0}\right) = \int_a^b \mu(x) dx$

μ material's attenuation coefficient, depends on X-ray beam energy and materials the photons

CENTRE FOR MEDICAL RADIATION PHYSICS

34

Radon transform (1917)

Radon proved that a 2D function *f* can be "reconstructed" from the line integrals around the function ($-\infty \le s \le +\infty$ and $0 \le \phi \le 360^{\circ}$) by inverting the operator Radon transform R: $p(s,\phi)=R[f(x,y)]=\int t(s,\phi)\uparrow f(t)dt$

 $f(t) = R^{\uparrow} - 1 [p(s,\phi)]$

Backprojection - 0

Backprojection - 0

The 1st CT

Ambrose and Hounsfield, Br J Radiol (1973) <u>46</u>, 1016

Evolution of CT technology

CENTRE FOR MEDICAL RADIATION PHYSICS

Radioactive isotopes have proven to be valuable tools for medical diagnosis. The photo shows gamma-ray emission from a man who has been treated with a radioactive element. The radioactivity concentrates in locations where there are active cancer turnors, which show as bright areas in the gamma-ray scan. This patient's cancer has spread from his prostate gland to several other locations in his body.

Alex Malaroda, UOW Dr Erin McKay, St George Hospital (Kogarah, Australia)

NUCLEAR MEDICINE IMAGING

Radioactivity in medicine

- Unstable nuclei (radionuclides) decay to stable states emitting particles:
 - Gamma rays, electrons, positrons, alpha particles
- Radionuclides can be attached to pharmaceuticals or molecule that can follow a physiological or biochemical process

Bone scan

- ^{99m}Tc methylene diphosphonate (MDP) is taken up by fast growing osteoblast cells
- ^{99m}Tc is a metastable radionuclide: it decays emitting photons with energy
- 140 keV
- Increased uptake of MDP in areas of inflammation, fractures or cancer (primary or metastases)

Cardiac studies: gated blood pool

- ^{99m}Tc pertechnetate is injected to label red blood cells
- amount of blood in the heart at different beating phases can be measure

Image acquisition

Planar imaging

3D imaging Single Photon Emission Tomography - SPECT

INSPYRE 2018

44

Myocardial perfusion

- ^{99m}Tc sestamibi distributes in the myocardium proportionally to the myocardium blood flow
- Ischemia versus infarct

CENTRE FOR MEDICAL RADIATION PHYSICS

Considerations in image formation

- Radionuclide decays with time and redistribute within the body during the imaging
- Photons travel through the patient and within the detector
 - They get absorbed and scattered

Signal to electronics

SPECT/CT

Positron Emission Tomography

¹⁸F-FDG imaging

Glucose metabolism

- FDG is a glucse analogue, used by cells like glucose
- FDG-PET scans can be used to measure the cellular metabolic rate of glucose (MRGc)

Why glucose metabolism?

http://www.aboutcancer.com/pet scan.htm

51

Segmentation of lung lesions on 4D-PET/CT images for radiation therapy treatment planning

Timia Osman

Supervisors: Alessandra Malaroda, Anatoly Rozenfeld, Bruce McBride, Simon Downes

Introduction: Imaging

- Respiratory motion can lead to incorrect delineation of lung tumours
- View tumour movement over time

.

- 4D-PET/CT vs 3D-PET/CT
- View morphological and metabolic information

53

http://uthealth.utoledo.edu/centers/cancer/radiation-oncology/services/lung-cancer.html

Introduction

4D-PET/CT anthropomorphic phantom data set

Random walk intuition

- Steps to bkg seed = 4
- Steps to tumour seed = 7
 - . prob_{bkg} > prob_{tumour}
- However, there is more fancy maths involved

Beta parameter and the effect on the volume

$$w_{ij} = exp\Big(\frac{\beta}{d(\mathbf{i},\mathbf{j})^2}\Big)$$

2D vs 3D Random Walk

58 Document title

3D RW

3D RW with Beta set to 20

60

Comparison with thresholding

True Volume	RW with optimised β	RW with β = 20 (mL)	Adaptive Threshold	40% Fixed Threshold
(mL)	(mL)		Volume (mL)	Volume (mL)
54.5	54.4	35.9	47.2	49.3

Conclusion / Future work

- Random Walk can be used for the segmentation of 4D-PET/CT moving lung tumours
- There is still work to do in improving image segmentation
 - 2D RW and gradient analysis
 - 3D RW and region growing

