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physics and medicine

Looking inside people:
by using X-rays, magnetic resonance and
ultrasound

........

https://www.surrey.ac.uk/events/20170425-medical-physics-talk

Understanding physiology:

Positron Emission Tomography imaging
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Y -ray vision

using radiation
to peek inside bodies

Alex Malaroda

School of Physics & Centre for Medical Radiation
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University of Wollongong &
Centre for Medical Radiation Physics

UOW:

+ top 2% universities in the world

« 3international sites/partners:
Dubai, Hong-Kong, Singapore

» Undergraduate and postgraduate
program in physics and in medical 4
radiation physics
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CMRP:
Largest medical physics group in Oceania
and south-east Asia

Collaborators:

NASA

Brookhaven National Labs (USA)
Rutherford Labs (UK)

CERN (Switzerland)

INFN, Laboratori di Frascati (INFN)
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Dalla strada costiera
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WHERE

MODERN PHYSICS
MEETS

MEDICINE

Historic background and the discovery of the X-rays
Modern physics and medicine
- Production of photons: X-rays and Radioactivity
- The physics of the photons
From X-ray projections to conventional tomography to computed
tomography
Emission tomography
- The gamma camera
- Single photon emission tomography
- Positron emission tomography
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5t Solvay international conference on
Electrons and Photons (1927)

front row

Irving Langmuir, Max Planck, Marie Curie, Hendrik Lorentz,
Albert Einstein, Paul Langevin, Charles-Eugéne Guye, C.T.R
Wilson, Owen Richardson.

middle row

Peter Debye, Martin Knudsen, William Lawrence Bragg, Hendrik
Anthony Kramers, Paul Dirac, Arthur Compton, Louis de Broglie,
Max Born, Niels Bohr.

back row

Auguste Piccard, Emile Henriot, Paul Ehrenfest, Edouard
Herzen, Théophile de Donder, Erwin Schrédinger, JE

i Verschaffelt, Wolfgang Pauli, Werner Heisenberg, Ralph Fowler,

© Rare Historical Photos 2018 RareHistoricalPhotos.com Léon Bri”ouin -

CENTRE FOR
MEDICAL o UNIVERSITY
RADIATION ¢ OF WOLLONGONG

PHYSICS ¢ AUSTRALIA

9 INSPYRE 2018



WHY MODERN PHYSICS?
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Classical physics works

Cassini interplanetary trajectory

VENUS 1 FLYBY
26 APR 1998
VENUS 2 FLYBY
24 JUN 1999

A5
sl

EARTH FLYBY

LAUNCH
15 OCT 1997

18 AUG 1999
https://saturn.jpl.nasa.gov/resources/1776/
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odern Physics

and
generated uncertainty
new ideas principle
Planck like the
hypothesis

which found

fail ¢ some remedies
grew out of ailure o in
classical
\ physics /
launched by

experiments
guchiles photoelectric effect
blackbody radiation
Compton scattering

led to quantum
numbers

quantum
statistics

I
I
wave particle duality

hydrogen spectrum

leading to

Modern Physics

which led to hydrogen

starting with
& Bohr theory 4 energies
|

|

|

|

I

Einstein’s relativity theory

started analysis of atomic properties

to describe Periodic Table

fundamental

Schroedinger
equation

used in

laws of physics are the same in all
inertial reference frames

based on the
postulates

the speed of light in free space has
the same value c in all inertial
reference frames

Adapted from http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html
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The discovery of the X-rays

1895
First X-ray: Roentgen’s wife hand

Roentgen observed highly penetrating radiation while studying cathode rays in tubes evacuated of air.

FLUORESCENCE

ELECTRON
STREAM .

CATHODE

BARIUM
PLATINOCYANIDE
SCREEN

VﬂCU'.JTMD PUMP
http://www.rfcafe.com/references/popular-electronics/x-rays-

october-1960-popular-electronics.htm
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The evolution of medical imaging

PET/MF + -
PET/CT, SPECT/CT
MRI tomography
PET
cT
nuclear medicine imaging
Discovery of the X-rays X-rays with Ba contrast
X-ray imaging
1900 910 1920 1930 1940 1950 1950 1970 1980 1980 2000 2010 P
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The physics of 1imaging

Electrons decelerating in a material emit photons
— X-rays are produced through the Bremsstrahlung effect

Unstable nuclei emit particles in order to become “stable”
— Gammas, electrons, positrons, alpha particles

Photons interacting in a material can be:
— Absorbed (photoelectric effect)
— Deflected (change direction) but not losing energy (Rayleigh scatter)
— Change direction, lose energy and free electrons (Compton scatter)
— Pair production
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Bremsstrahlung: production of photons

Charged particles decelerated by the electric and magnetic field of a nucleus
lose kinetic energy, which is converted into emission of photons (x-rays)

The emitted photons can have energies between 0 and the maximum kinetic
energy of the incident charged particle

Target atom

Close interaction:
Moderate energy

Distant interaction:
Low energy

Impact with nucleus:
Maximum energy
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Production of x-rays

x-rays are produced by the deceleration of electrons in a target material
(Bremsstrahlung):

electronscaresemitted-by-a<filament#ftungsten)-heated-at2000C-and~
accelerated towards a target (e.g. aluminium, tungsten or copper), the
electrons are decelerated within the target and bremsstrahlung and
characteristics (for the target material) x-rays are produced.

The x-ray beam is than collimated (pre-patient collimation).

The x-ray produced by an x-ray tube is a poly-energetic (polychromatic)
beam with energies between 0 up to kVp keV.

The kVp (kilovolt peak) is the maximum voltage applied across the x-ray
tube and determines the maximum energy of the electrons impacting on
the tube target and the maximum energy of the x-ray emitted.

High Voltage

target \

anode

cathode ',*J {0 O . %
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Production of X-rays

%
K- CHARACTERISTIC

> o RADIATION
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BREMSSTRAHLUNG
MAX. PHOTON ENERGY
1 f T
0 50 100 150 200
PHOTON ENERGY (keV)
The spectrum of bremsstrahlung and K-characteristic radiation
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Unstable nucle1: radioactivity

. 2 %
Radioactivity
There are many odes of Fadoactive decsy, sl  pamiculas isoops ke
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Gamma emission
too much energy

Alpha emission:
too much mass

Electron emission:
too many neutrons

Positron emission:
too few neutrons
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Photons interaction with matter

Photoelectric effect Photoelectric effect
o
Py o
1 o 3 °
[} m L ] -]
£ .
e © ° .
Q
ghotoelectron
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Photons interaction with matter

Characteristic X-rays
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Photons interaction with matter

Coherent scattering

(Thompson scattering)

. Scatter: e M
— Coherent £ .\
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Photons interaction with matter

Compton scattering

Scatter: o o \

&

— in-coherent scatter (Compton)

A— A0 = h/mc (1—cosB) ..’

recoil electron
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Photons interaction with matter

Pair production: e~ e*

Ely>mlel— cT2 +mlel+ c12 =2mlel— cT2=2"!

(E, in medical imaging ~ 80-200 keV)

Very-high-enargy
incident photon
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Attenuation of a photon

The photon can: ?

Be transmitted with no interaction =

. Be absorbed (photo-electric effect) >

. Get scattered:

— without losing energy (coherent scatter) <>
— Losing energy (Compton scatter) AXx
. Produce an e- e* pair
Which one of these processes is the most probable?
depends on the cross-section of each process
which depends on the: energy of the photon and the material of the target CENTRE FOR >
MEDICAL . UNIVERSITY
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Attenuation of photons

A number N, of photons incident to an object can undergo

photoelectric effect, scatter (coherent, Compton) or

pair production (if E > 1.02 MeV)

N
N=NI0 =AN=— N0 uAx =>N= N0 el—u(E, material) Ax

The probability of N transmitted photons is proportional to the linear
attenuation coefficient u of the material

U=wlphotoelectric +ulscatter +ulpair production

\AAAAL
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Photon interaction modes

Relative importance of photon interaction modes for tissue, bone and Nal for incident photon of energies between

20 and 100 keV

; Water/Tissue Bone Sodium iodide
100%
50%
0% EE—
20 60 100 20 60 100 20 60 100
keV keV keV
Photoelectric D Compton - Coherent
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(projection) radiography

. The image is a given by the number of photons transmitted through the object

. The transmission depends on the material traversed:
— attenuation coefficient of bone > attenuation coefficient of soft tissue
— attenuation coefficient of soft tissue > attenuation coefficient of air

= more photons attenuated by bone than soft tissue

In order to form an image, enough photons needs to be transmitted onto the film/detector
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projection) radiography

NIST X-ray mass attenuation coefficients

u/p (cm?/g)
10000
[
|
‘\‘ —lodine
1000 1 Tissue, Soft (ICRU-44)
— Lung Tissue (ICRU-44)
Bone, Cortical (ICRU-44)
100
10 -
1 ST —e
0
0.00 0.03 0.05 0.08 0.10 0.13 0.15

Energy (MeV)
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mammography

100 -
monochromatic conventional mammographic 2
Mal raphic X-ray spectra
radiation 17 keV unit Mo/Mo 28 kVp o
w— Mo anode
0.3 mm Mo
e W anode
- 0.5mm AL
S
2
Q
B
z
i
2
2
=
@
o
Fig. 3 — Confronto fra una mammografia monocromatica (sinistra) con una tradizionale 0 - ./ - - \
destra). 5 10 15 20 25 30 35
( )
E (Kev)
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mammography

— muscle skeletal

=
monochromatic conventional mammographic E 1.80 -
radiation 17 keV unit Mo/Mo 28 kVp A
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Fig. 3 — Confronto fra una mammografia monocromatica (sinistra) con una tradizionale en!fﬂ'lk“ﬂ
(destra).
s3]
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Conventional tomography

focal plane

plane parallel to the focal plane

film/detector

Moving the detector with speed

videtector = (H—Nn)/h viXrays

Objects outside the focal plane will be blurred
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Dental panoramic

developed in 1933
first commercial machine in 1950s

path of X-ray tube

-~ -4

7

X-ray beam

focal plap

http://www.hamamatsu.com/jp/en/
hamamatsu/newsroom/advertisements/
nature/0807ccd/en.html

film/detector <’/path of film/detector
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3D X-ray images

1, intensity of produced X-rays, / intensity of

|
. TR detector  detected X-rays.
X-ray R l'is the number of photons not attenuated in
- 7 4 \ l the Object_
/
0 / Beer’s Law:
b
_fﬂ(X)dx I b
Bineas =l | W -l )= fula)ds
T 1=
111

u material’s attenuation coefficient, depends on
X-ray beam energy and materials the photons

QX pass through
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Radon transform (1917)

yA

v

Radon proved that a 2D function £ can be
‘reconstructed” from the line integrals around the
function (-~ <s <+« and 0 < ¢ < 360°) by inverting

the operator Radon transform R:

S(O=RT=1 [p(s,$)]
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Backprojection - 0

WOOD / FOREST

view 2

view 1

view 2

CENTRE FOR 5
ey @) UNIVERSITY
RADIATION ¢ OF WOLLONGONG
PHYSICS ¢ AUSTRALIA




Backprojection - 0

WOOD/FOREST

view 1

view 1

view 3
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Ambrose and Hounsfield,
Br J Radiol (1973) 46, 1016

igraphy): Part 1. Description of system

axial scanning (|

Ct

X-ray source

. /'
"

e
0
slice 2 bone tumour 4 5
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1
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Evolution of CT technology

partial fan beam (1972)

1. translation —_
¥

pencil beam (1970)
1. translation

™
(l:’)—'—(“ %’%

>24h

T i
(b) 2™ generation: franslation/rotation

(a) 1= generation: translation/rotation

fan beam (1976) fan beam (1978)

stationary
detector ring

(d)4" generation: continuous rotation

(c)2* generation: continuous rotation

from Kalender; Phys Med Biol (2006) 51; R29
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Alex Malaroda, UOW

Radloactive Isotopes have proven to be valuabie tools for medical diagnosis. The photo
shows gamma-ray emission from a man who has been treated with a radioactive element.

The radioactivity concentrates in locations where there are active cancer tumors, which
Dr Erin McKay, St George Hospital (Kogarah, Australia)

show as bright areas in the gamma-ray scan. This patient’s cancer has spread from his
prostate gland to several other locations in his body.

NUCLEAR MEDICINE IMAGING
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Radioactivity in medicine

. Unstable nuclei (radionuclides) decay to stable states emitting particles:
— Gamma rays, electrons, positrons, alpha particles

. Radionuclides can be attached to pharmaceuticals or molecule that can follow a physiological or
biochemical process
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Bone scan

«  99MTc methylene diphosphonate (MDP)
is taken up by fast growing osteoblast
cells

«  99MTc is a metastable radionuclide:
it decays emitting photons with energy

. 140 keV

. Increased uptake of MDP in areas of
inflammation, fractures or cancer
(primary or metastases)

42 INSPYRE 2018
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Cardiac studies: gated blood pool

99mTc pertechnetate is injected to label red blood cells

amount of blood in the heart at different beating phases can be measure
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3D imaging

Image acquisition
Single Photon Emission Tomography - SPECT

Planar imaging
Computer Monitor
1-D projection
; cmmf:nﬂg'lcﬁ

X-position signal Image
Y-position o ﬂ-’
signal _ ‘ =
AN 5\
: 2 EITEE
Linearity &
uniformity
Pulse corrections
height
analyzer
I Z-signal
Positioning & summing circuits
PM tube amray e avars / [/;\\
.......... - / o )
~ Light guide S— / R} /
Nal(TI) crystal NG
Collimator / i:u“gf :;‘:i:xv:n
/ through object
POLAR
Patient
T
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Myocardial perfusion

«  99MTc sestamibi distributes in the
myocardium proportionally to the
myocardium blood flow

. Ischemia versus infarct

Normal
Stenosis

Coronary artery N
|

lll Stenosis | Stenosis

AV

7\‘-‘\‘) i )
Myocardial
/ perfusion
T, Image 2l £

R Iies; 3 r Stress r

Flow, mi/min
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Considerations in 1mage formation

. Radionuclide decays with time and redistribute within the
body during the imaging

Signal to electronics

ot J

. Photons travel through the patient and within the detector

En}“i.xod “_ug{'
—  They get absorbed and scattered b8

~

Bois Collimator :
gi sl % — N Al’borbcd in collimator
2 e Eg ." ~
100~ 2 -
£ H - 2w
E p . e darail Radioisotope decay
3 « g Nal{Tl) detecto i a
. E o ' by y emission
2 e 3 ] :
',;,! g & Scintillation site for y rays
2 40 - §
w
2
g 20
& CENTRE FOR
0 ! 1 1 1 T R € 1 1 MEDICAL
L] 100 200 300 400 500 800 700 800 ] TERSITY
ENERGY (keV) RADIATION ! bl‘-\{\\('_)‘lulbé)l\\b()\b
PHYSICS ¢ AUSTRALIA

46 INSPYRE 2018



SPECT/CT

Coroas

Traowaise
Bone Tomo-NECK [Commecied], 23040008
7 ] C ' '
It 5 E3
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Positron Emission Tomography

Positron Emission Tomography

Positron emitting isotope
511 KoV

Positron
511 KeV Electron
annihilation,

photon

/77
’.‘s,
b
Y True
fyd
3
i -
i /s
—
Ll " Random
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BE-FDG imaging

[18]F-flourodeoxyglucose

A
SPECT PET |SPECT PET |SPECT PET |SPECT PET

stress 1Y Q\ '\? )3 )cﬁ

2-[F-18]Fluoro-2-Deoxy-D-Glucose
(FDG)

« 511 kaV photon

180
n * 511 kaV photon
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Glucose metabolism

FDG is a glucse analogue, used by cells like glucose
FDG-PET scans can be used to measure the cellular metabolic rate of glucose (MRGc)

MRGlc= /1 Tx £I3Tx /2 T+ +

tissue

hexokinase
Glucose et Glucose === Glucose-6-PO;—
phosphatase
3l = ghycolic
> pathway

glucose

extracetiular space

hexokinase
———— FDG-6-PO,

FDG —owr—» FDG

CENTRE FOR

MEDICAL o UNIVERSITY
RADIATION @ | (F WOLLONGONG

PHYSICS ¢ AUSTRALIA

50 INSPYRE 2018



Why glucose metabolism?

PET Scan = Metabolic Activity

normal activity -
normal liver 7
——ﬁ— stomach
low activity y
hematoma - '

[
\ $ ——’f spleen
high activity
. =

Imetastatic cancer ~

On A PET Scan over activity (consumption of glucose)
is typical for cancer. compared to normal structures

http://www.aboutcancer.com/pet_scan.htm
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Segmentation of lung lesions

on 4D-PET/CT images
for radiation therapy treatment planning

Timia Osman

Supervisors: Alessandra Malaroda, Anatoly Rozenfeld, Bruce McBride, Simon Downes
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Introduction: Imaging

-42.38 mm

¥ -  Respiratory motion can lead to incorrect delineation of lung

tumours
. View tumour movement over time

— 4D-PET/CT vs 3D-PET/CT

View morphological and metabolic information

§
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Introduction

4D-PET/CT anthropomorphic phantom data set
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Image

Segmentation

Manual

based

Region-based

Graph-based

Random
Walker
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Rangd < 1ntuition

« Steps to bkg seed =4

« Steps to tumour seed =7

3 prObbkg > prObtumour

« However, there is more
Psi= | fancy maths involved

<
/ | &
\\__,//
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Beta parameter and the effect on the volume

(]i = )2 4D PET with spheres of varying volume
Wij = e:z:p(o’ —J) 1000
‘ d(i, j)
0r ——
Weighting equation gl
-2000
@
& -3000
g
£
& 4000
(ml)
-5000 T s |
54.5
275
-6000 165 7
8.5
L 46 | |
-7000 26 |
-8000 2 - 2 !
0 2 < 6 8 10 12 14 16 18 20
Beta value
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% Difference

2D vs 3D Random Walk
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3D RW
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3D RW with Beta set to 20

CENTRE FOR
ey @) UNIVERSITY
RADIATION ¢ OF WOLLONGONG
PHYSICS ¢ AUSTRALIA

60 Document title



Comparison with thresholding

True Volume RW with optimised B RW with 8 =20 (mL) Adaptive Threshold 40% Fixed Threshold
(mL) (mL) Volume (mL) Volume (mL)

54.5 54 .4 : 47.2 49.3
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Conclusion / Future work

« Random Walk can be used for the segmentation of 4D-PET/CT moving lung
tumours

* There is still work to do in improving image segmentation
— 2D RW and gradient analysis
— 3D RW and region growing
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