Non Destructive

X-Ray Fluorescence Analysis (XRF)

Group

Astrik Gorghinian

XRF

STEPS OF EXAMINATION

• **INSPECTION:** for example by means of an electromagnetic radiation

• Assessment: comparison to a model

Diagnostics: inspection methods

NON DESTRUCTIVE

NO alteration on the object do occur during the analysis

> NON INVASIVE

The analysis is performed on representative samples, very small amount of sample taken from the artwor

Electromagnetic Spectrum

Region	Wavelength (Angstroms)	Wavelength (centimeters)	Frequency (Hz)	Energy (eV)
Radio	> 109	> 10	< 3 x 10 ⁹	< 10 ⁻⁵
Microwave	10 ⁹ - 10 ⁶	10 - 0.01	$3 \times 10^9 - 3 \times 10^{12}$	10 ⁻⁵ - 0.01
Infrared	10 ⁶ - 7000	0.01 - 7 x 10 ⁻⁵	$3 \times 10^{12} - 4.3 \times 10^{14}$	0.01 - 2
Visible	7000 - 4000	7 x 10 ⁻⁵ - 4 x 10 ⁻⁵	4.3 x 10 ¹⁴ - 7.5 x 10 ¹⁴	2 - 3
Ultraviolet	4000 - 10	4 x 10 ⁻⁵ - 10 ⁻⁷	7.5 x 10^{14} - 3 x 10^{17}	3 - 10 ³
X-Rays	10 - 0.1	10 ⁻⁷ - 10 ⁻⁹	3 x 10 ¹⁷ - 3 x 10 ¹⁹	10 ³ - 10 ⁵
Gamma Rays	< 0.1	< 10 ⁻⁹	> 3 x 10 ¹⁹	> 10 ⁵

Multiwavelenght Milky Way

https://kaiserscience.wordpress.com/physics/electromagnetism/light-is-an-em-field/

6

Scheme of an X-Ray tube

X-Ray tube spectrum

X-ray spectrum obtained when energetic electrons strike a material. The smooth part of the spectrum is bremsstrahlung, while the peaks are characteristic of the anode material. Both are atomic processes that produce energetic photons known as x-ray photons.

X-Ray FLUORESCENCE

An X-Ray beam strikes a specimen and transfers part of its energy, in known quantities characteristic of the absorbing atom, to the bind electrons e⁻ of the inner shells producing the ejection of the e⁻ (photoelectric effect)

In the excited atom a transition is induced with consequent X-Ray emission. The emitted radiation has an energy and intensity related to the type and abundance of the element present in the involved sample.

XRF

XRF Spectrum

XRF

The result of the investigation is a plot named XRF Spectrum : in this diagram the number of characteristic X-Ray photons emitted by an element is plotted versus its energy.

Z	ka keV	kb keV	La keV	Lb keV
Cu	8.04	8.90	0.93	0.95
Ag	22.01	24.94	2.98	3.15
Pb	74.22	84.92	10.55	12.61

Photon's Energy (keV)

XRF Measurement

Measurements are performed in short time (some hundreds of seconds)

- The information is related to a superficial layer of the specimen (fractions of some mm for metals to some cm for woods)
 - The investigated **area** has the same dimension of the beam spot : depending on needs, this parameter can be reduced from **some cm²** to **mm² fractions**.

•Inner-shell electrons of the sample atom are ejected by source x-rays •Outer-shell electrons fill-in the unoccupied inner-shell electron positions •X-rays are released providing sample information

XRF spectrometer at LNF

Information (XRF)

<u>**Qualitative**</u> identification of the chemical elements present in the sample with weight percentage < some percentage

 <u>Quantitative determination</u> of the chemical elements ± some percentage error in a specimen

Experimental Set-Up • X-Ray tube (energy \leq 60 keV) Sample Semiconductor detector Si(Pin) Peltier cooled Signal Amplifier Multichannel analyzer MCA (analog/digital) converter) Acquisition and data processing system

Experimental Set-Up

Paintings

Metal artworks

XRF Applications

XRF

Earthenware & pottery

Stones & gems

Enamel & glass

XRF painting

qualitative analysis

Vermilion: grounded Cinnabar HgS

White lead: primer

Van den Heuvel Annunciation Saint Nicholas Church , Ghent

XRF ink

Raffaello de Mercatellis collection Manuscrpit n.109 University Library, Ghent

Qualitative analysis Ferro-gallus ink Fe+Zn salt in gallus acid

with the 0.0

territer and the

2226 nb 61

ah

5 320

an

an

XRF glass

XRF

Merovingian graveyards

qualitative analysis Colouring elements

21

XRF terracotta

Chyproarchaic terracotta Nicosia Museum

XRF

XRF pottery

Black glaze pottery Lavinium (Pratica di Mare)

Quantitative analysis Elements concentration determination

XRF gemstones

Red Spinel MgAl₂O₄

Quantitative analysis determination of trace elements

24

XRF metals : coins

25

XRF metals: statues

Alloy Different composition *Quantitative analysis* of the alloy

> Typical spectrum of a Nuragic bronze (Pb <1%)

26

Bronze object found at Vivara Island (Na)

XRF metals: Jewelley

Quantitative analysis of the alloy

27

Etruscan jewel (Castellani Collection) National museum of Villa Giulia

XRF pollution: frescoes

Qualitative analysis

Case study of S & CI depositions on frescos, caused by air pollution Detection down to 0.1% of S o CI

XRF

XRF corrosion and patina: bronze

XRF

Patina studies

29

XRF restore/preserve: marble

Solvent efficiency to remove sulfur

Qualitative analysis Surface Cleaning studies

Michelangelo Davide Galleria dell'Accademia, Florance

XRF

XRF Limits

- Light Chemical Elements (organic substances) not detectable
- Surface analysis: to study the bulk other techniques must be used

XRF

Detector's resolution (>100 eV)

Thank you for your attention

http://padlet.com/astrikgo rghinian/XRF_en

http://padlet.com/astrikgo rghinian/XRF_it

> M.C. Escher Impossibile Cube (Necker's Cube)

Glossary

term	definition
atomic spectra	the electromagnetic emission from atoms and molecules
binding energy	also called the <i>work function</i> ; the amount of energy necessary to eject an electron from a material
bremsstrahlung	German for braking radiation; produced when electrons are decelerated
Compton effect	the phenomenon whereby x rays scattered from materials have decreased energy
characteristic x rays	x rays whose energy depends on the material they were produced in
ionizing radiation	radiation that ionizes materials that absorb it
photoelectric effect	the phenomenon whereby some materials eject electrons when light is shined on them
photon energy	the amount of energy a photon has
photon	a quantum, or particle, of electromagnetic radiation
х гау	EM photon between γ -ray and UV in energy

XRF

Copies or alterations made with fraudulent intent fall into 4 main categories:

- Forgery = a whole new work in imitation of something else
- Fake=an object that has been altered such that it appears to be something else, usually more valuable
 Pastiche=something made up of unrelated pieces
 Genuine=object that has been deceptively restored, such that serious damage is hidden or disguised

Bibliography

- https://kaiserscience.wordpress.com/physics/electromagnetism/light-is-anem-field/
- https://courses.candelalearning.com/colphysics/chapter/29-3-photonenergies-and-the-electromagnetic-spectrum/
- P. Craddok, Science Investigation of copies, fakes and forgeries, 2009 Elsevier

http://quest.nasa.gov/aero/planetary/archimedes

Mach-up

Alloy	Earthenware	Pollution
Analog	Electron ejection	Preservation
Artwork	Fresco	Qualitative analysis
Bead	Gemstone	Quantitative analysis
Coin	Glaze	Radiation source
Conservation	Imprimatur	Sample
Conservative science	Investigation	Semiconductor
Cultural Heritage	Layer	Specimen
Detector	Non Invasive	Spectrum
Diagnostic	Non Destructive	