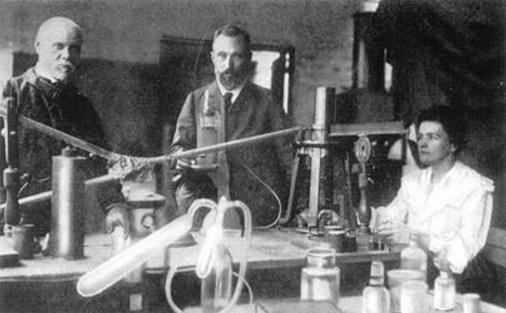
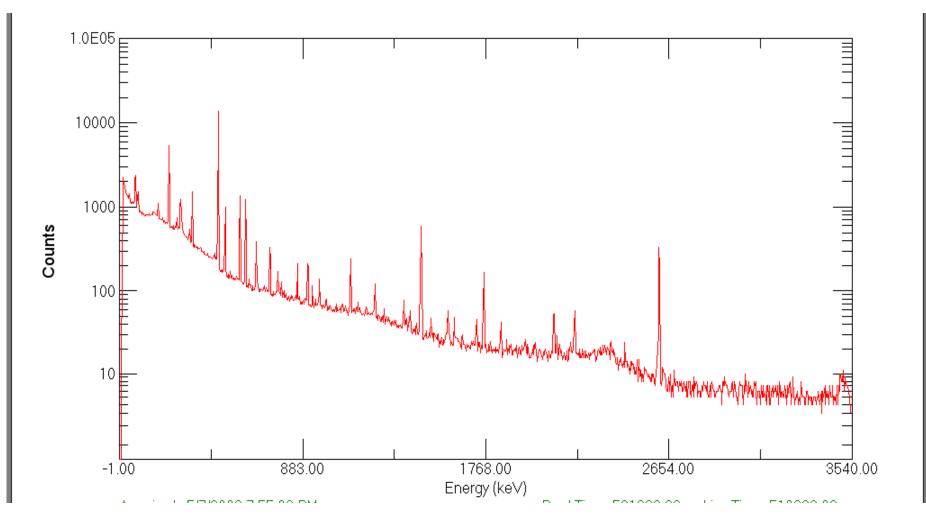
What Napoleon and Fukushima have in common? Nothing but...a physicist!

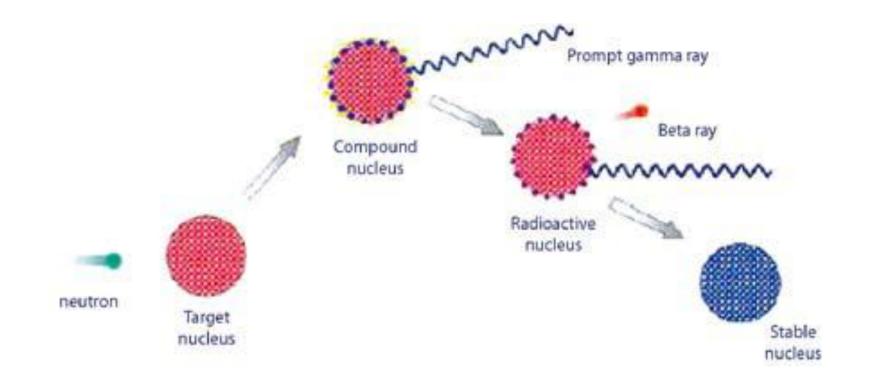

- **1. New level instrumentation**
- 2. Trace elements: who killed Napoleon? Nobody?
- **3. Chernobyl and Fukushima:** what about us

RARE EVENTS
1. Neutrino interactions
2. Interaction by Dark Matter Particles
3 Rare nuclear process


COSMIC RAYS Go underground

RADIOACTIVITY Natural and artificial

X and γ spectra in environment


X, α and γ spectroscopy

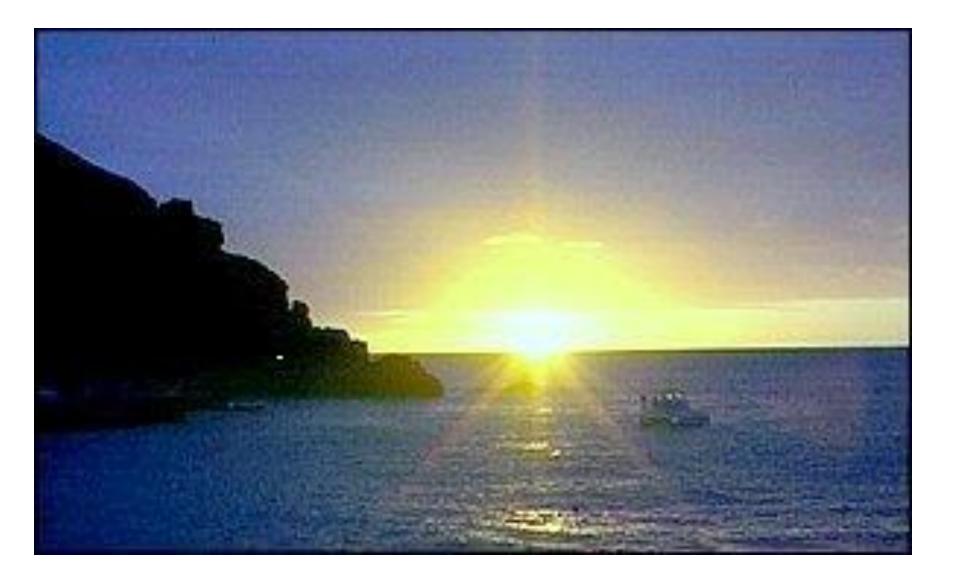
Laboratorio di Radioattività

PSMS (Plasma Source Mass Spectrometry)
 Inductively Couple d Plasma Mass Spectroscopy

Neutron Activation Analysis

Particularly sensitive to search for As \Rightarrow only stable isotope **75**As Thermal neutrons => ⁷⁶As

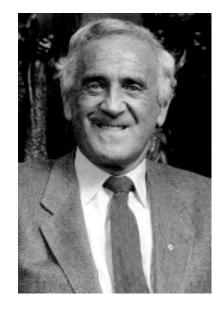
Arsenic as other elements concentrates itself in nails, hairs etc. Very important in criminology


Il cinque maggio

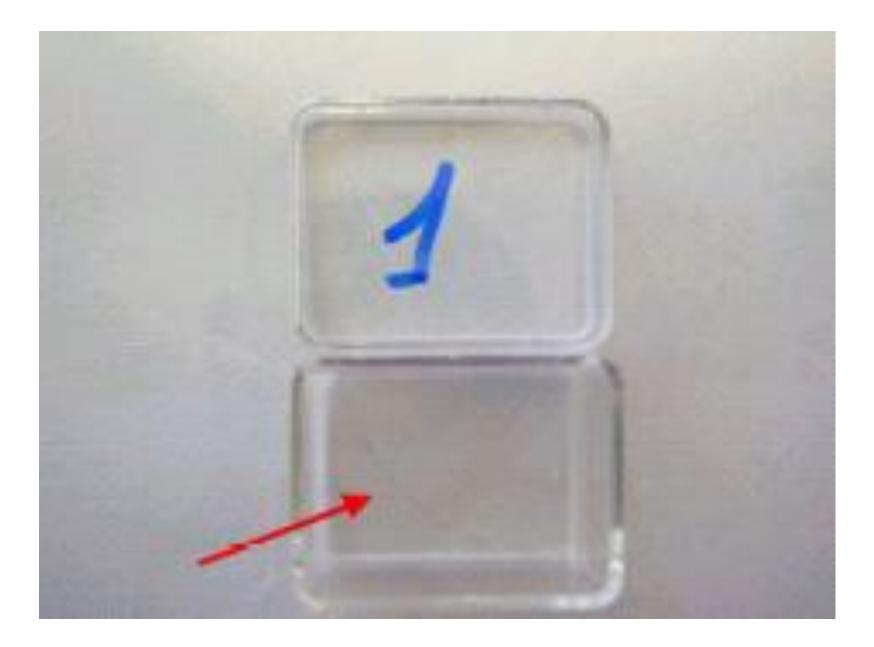
.....e i dì nell'ozio chiuse in sì breve sponda, segno d'immensa invidia e di pietà profonda, d'inestinguibil odio e d'indomato amor.

The fifth of May

.....and his idle days closed in such a short site, target of immense envy and of deep pity, of unchanged hate and of untamable love


Sant ' Helene

Please meet these people



Positive and negative measurements The Longhood tapissery

X ray fluorescence $\Rightarrow 0.08 \text{ g cm}^2$ a value presently non acceptable

The Pavia reactor

Measurements on the As content in the hairs of a living subject, and comparison with the content in the hairs of Aiglon and of Empress Josephine

Contemporary hair As(in 10-2 ppm)

Present 1	8,6 ±,9
Present 2	5,6 ± 1,8
Present 3	11,0 ± 3,5
Present 4	12,4 ± 3,9
Present 5	2,4 ± 1,1
Present 6	7,1 ± 2,8
Present 7	5,4 ± 1,7
Present 8	$4,0 \pm 1,4$
Present 9	4,3 ± 3,1
Present 1	0 4,8 ± 2

Aignon and Josephine				
As (in ppm)				
Aiglon 1812 - 1	9,4 ± 1,0			
Aiglon 1812 - 2	6,1 ± 0,6			
Aiglon 1816 - 1	$12,6 \pm 1,3$			
Aiglon 1816 - 2	$9,9 \pm 1,0$			
Aiglon 1821 - 1	9,9 ± 1,1			
Aiglon 1821 - 2	$11,2 \pm 1,3$			
Aiglon 1826 - 1	$7,6 \pm 0,8$			
Aiglon 1826 - 2	$8,5 \pm 0,9$			
Josephine - 1	$0,8 \pm 0,4$			
Josephine – 2	$1,2 \pm 0,5$			

Arsenic in the hairs of the Emperor


As (in ppm)

Corse 1770 – 1	8.3±0,9
Corse 1770 - 2	$6,3 \pm 0,7$
Elba 1814 – 1	$4,4 \pm 0,5$
Elba 1814 - 2	$3,5 \pm 0,4$
S. Elene 5 May 1821 - 1	13,1 ± 1,3
S. Elene 5 May 1821 - 2	16,7 ± 1,7
S. Elene 5 May 1821 - 3	14,2 ± 1,4
S. Elene 5 May 1821 - 4	17,0 ± 1,7
S. Elene 5 May 1821 - 5	15,4 ± 2,3
S. Elene 5 May 1821 - 6	18,9 ± 2,2
S. Elene 6 May 1821 - 1	15,2 ± 2,0
S. Elene 6 May 1821 – 2	$9,7 \pm 1,$

Along the hair

Fragment	Mass (mg)	As (ppm)
2A	0,012	$27,6 \pm 3,0$
2B	0,022	$22,0 \pm 2,5$
2C	0,026	$21,4 \pm 2,5$
2D	0,032	$17,5 \pm 2,0$
2E	0,032	$16,6 \pm 1,9$
2F	0,026	$20,7 \pm 2,4$

Arsenic content in the water of the spring liked by the Emperor (near his first grave)

Sample	As (µg/L)	
N.1	1,0000	
N.2	1,5000	
N.3	2,0000	
N.4	1,2500	
N.5	1,1000	
N.6	0,8000	
Average	1,28 ± .43	
Presently legally	accepted limit => 10	

Arsenic intake from medicines and definirtely from paper on walls , but not from water

We believed it was the end , but it was not true

Pubbllished by about 100 national and international journals

New York Times

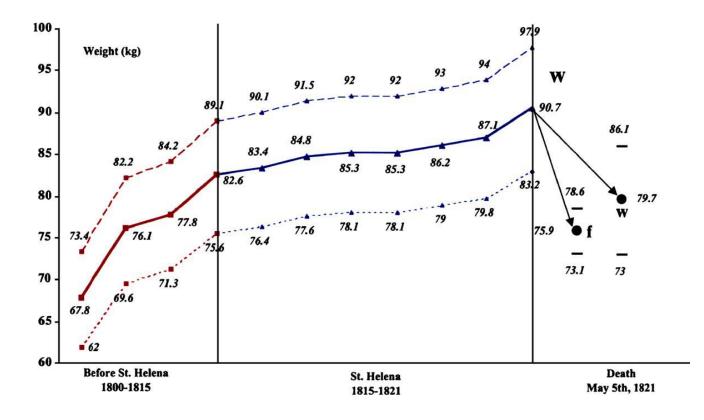
The New York Times

Hair Analysis Deflates Napoleon Poisoning Theories

Was Napoleon poisoned?

now, a team of scientists at Italy's **National Institute of Nuclear Physics** in Milan-Bicocca and Pavia has uncovered strong evidence to the contrary.

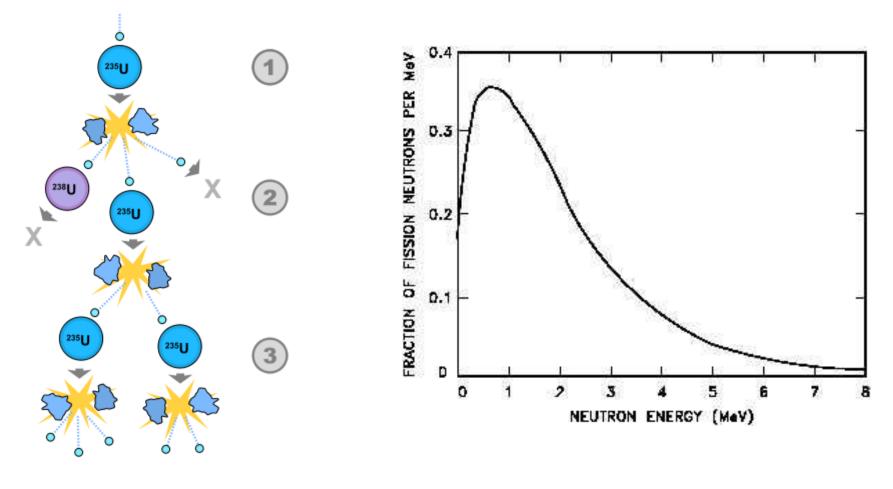
Contact with many pathologists:


J.T.Hindmarsh Royal College of Phatologists of England and Canada and P.F.Corso Norwalk Hospitala (Connecticut)

A.Lugli Department of Pathology – Basel University

- Very precise patologic analysis
- Change with time of the body weight compared with twelve sampoles in various museums compared with voluntary people
- Comparison with the subcutaneous fats of **270** people
- Comparison with gastic and other characteristics of patients dead of cancer with the very accurate authopsy of Francesco Antonmarchi (pupil of the famous Giuseppe Maccagni of Siena university

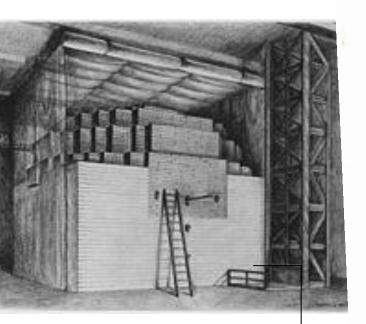
В

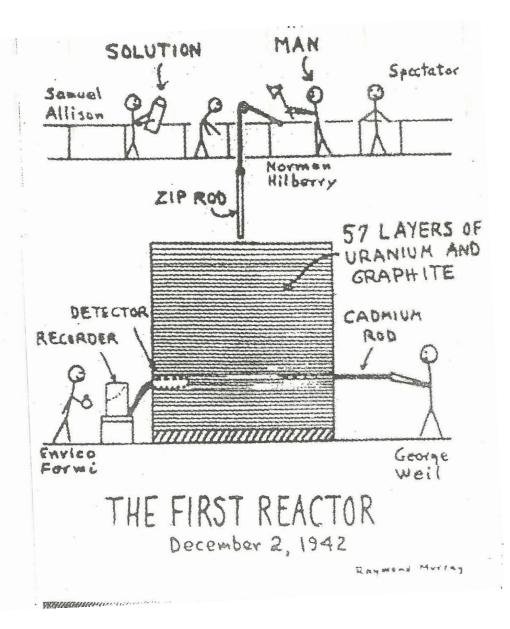

Was Napoleon Really too Obese for the Diagnosis of "Gastric Cancer"?

Lugli et al Adv Anat Pathol Volume 18, Number 2, March 2011

The Medical Mystery of Napoleon Bonaparte An Interdisciplinary Exposé

Alessandro Lugli, MD,* Massimiliano Clemenza, PhD,† Philip E. Corso, MD,‡ Jacques di Costanzo, MD,§ Richard Dirnhofer, MD, Ettore Fiorini, PhD,† 'ostanza Herborg, PhD,¶ John Thomas Hindmarsh, MD,#** Edoardo Orvini, PhD,¶ Adalberto Piazzoli, PhD,†† Ezio Previtali, PhD,† Angela Santagostino, PhD,‡‡ Amnon Sonnenberg, MD,§§IIII and Robert M. Genta, MD, FACG¶¶##


Nuclear fission: an incredible source of energy



Chain reaction

Neutron energy

The first reactor

LENA reactor in Pavia

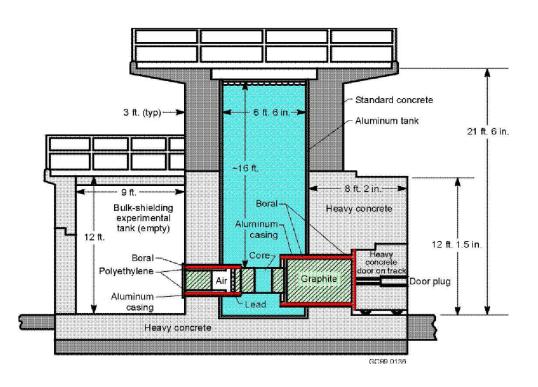
Effects of radiation

Sievert (Sv) => joule/kgxQ

Medium exposure => a few mSv/year Extra dose to people => < 1 mSv/anno professionals < 20 mSv/year Death (50% in 30 days) => 2.5-4.5 Sv Additional death per million=> 25 Sv/milion

Doses"often non considered" Radiotherapy e radiodiagnostics (1/5, 1/3, 1/20) ²¹⁰Pb e ²¹⁰Po in smokers -> ~1/3 more

Enrichment


Percentegs of ²³⁵U: Natural Uranium => 0.7% Uranium for power reactors =>3-5% Small reactors => ~20 % Bombs => ~90 %

The CHERNOBYL event

RBMK boiling water **initialy studied for military reasons**

Graphite as **moderator**

Thermal power => 3200 Mwatt => electric 1000 Mwat

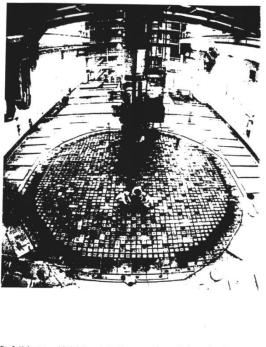
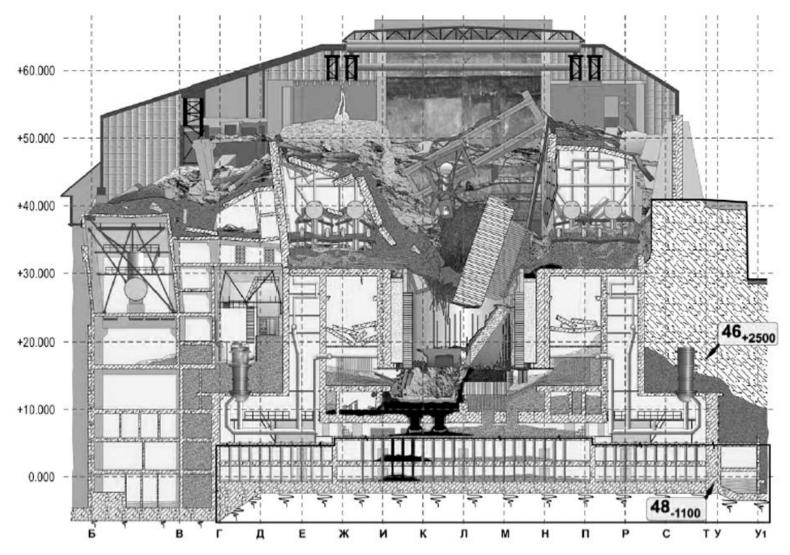



Fig. 5. Vedute interna della hall di uno degli edifici reattore della centrale elettronucleare di Chernobyl. Sono visibili al centro la macchina per il caricomento del combustibile e in primo piano la superficie biochi angrettorane di copentro del reattore. La piastra è suddivisa secondo un retecolo regolare in biochi angrettora di contalo li biochi sungi former. Agenzio TASSI ri) o uno Barra di contalo li biochi surgii. Former. Agenzio TASSI ri) o uno Barra di contalo li biochi surgii. Former. Agenzio TASSI nel contano li biochi surgii. Former. Agenzio TASSI contano di contalo li biochi surgii. Former. Agenzio TASSI contano di contano li biochi surgii. Former. Agenzio TASSI contano di contano li biochi surgii. Former. Agenzio TASSI contano di contano li biochi surgii. Former. Agenzio TASSI contano di contano li biochi surgii. Former. Agenzio TASSI contano di contano li biochi surgii. Former. Agenzio TASSI contano di contano di biochi surgii. Former. Agenzio TASSI contano di contano di contano di biochi surgii. Former. Agenzio TASSI contano di contano di contano di biochi surgii. Former. Agenzio TASSI contano di contano di contano di biochi surgii. Former. Agenzio TASSI contano di cont

Sarcophagus

What happened

- ⇒1.00 del 25.4.1986 The reactor power is reduced to bring it from 3200 to 700-800 Mwatt
- \Rightarrow 13.05 power at 1600 Mwatt . Turboalternators are disconnetted
- \Rightarrow 14.00 the emergency cooling sistem is isulated violating security laws
 - Energy is requested from Kiev the experiment is delayed by 9
- \Rightarrow **23.00** Power is reduced
- ⇒23.10 Expected power 700-1000 Mwatt Reactor at 30 M
- ⇒1.00 of 26.4.86 Power is increased only to 200 Mwatt. Only 6-8 bars
- \Rightarrow 1.03 two pomps are added to the working six : Eccessive flux
- ⇒1.10 all control bars bars are extracted
- \Rightarrow 1.23 ' 04 C The vapor-turbine valve is closed to continue by inertiaper. The security system would block the reactor. It is disconnected

.Reactor at 200 Mwatt without removal of heat Increase of temperature and power.

- \Rightarrow 1.23 ' 40 '' Operators pres AZ-5 . Bars do not insert
- ⇒1.24 ' 00 '' Power diverges => two explosions (vapor and hydrogen formed by water on zirconium Reactor explodes, building is destryed, gas, powder is emitted. Graphite at 2000 burn
- \Rightarrow Next days Fire stops under 5000 tons of dolomite, boron, carbide . sand , lead

¹³⁷Cs fallout

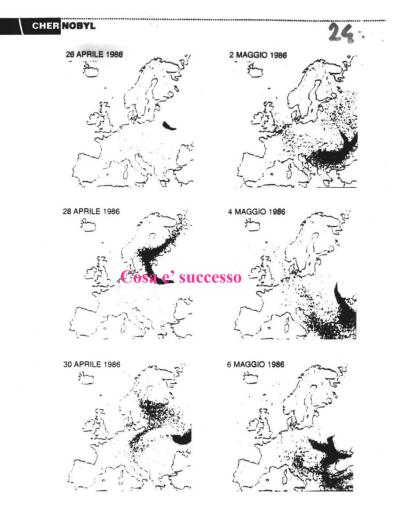
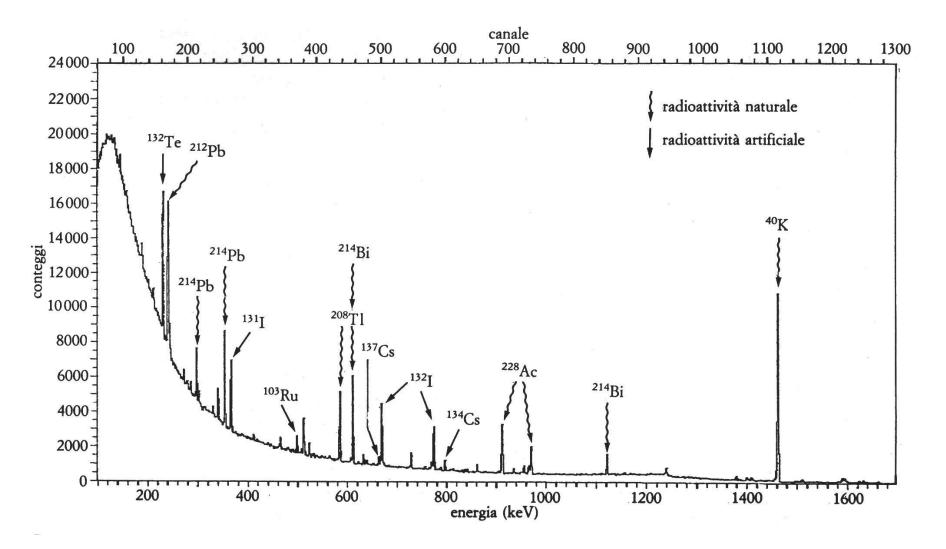
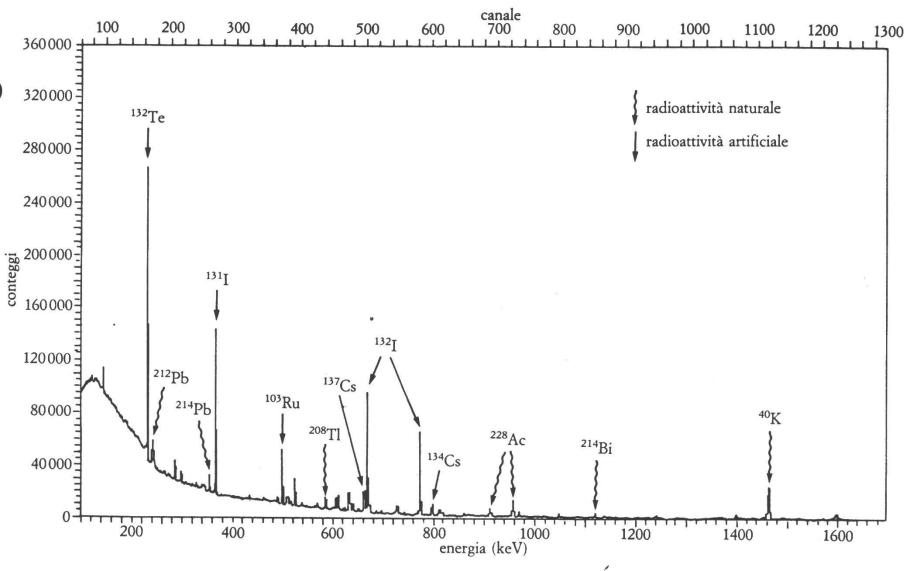
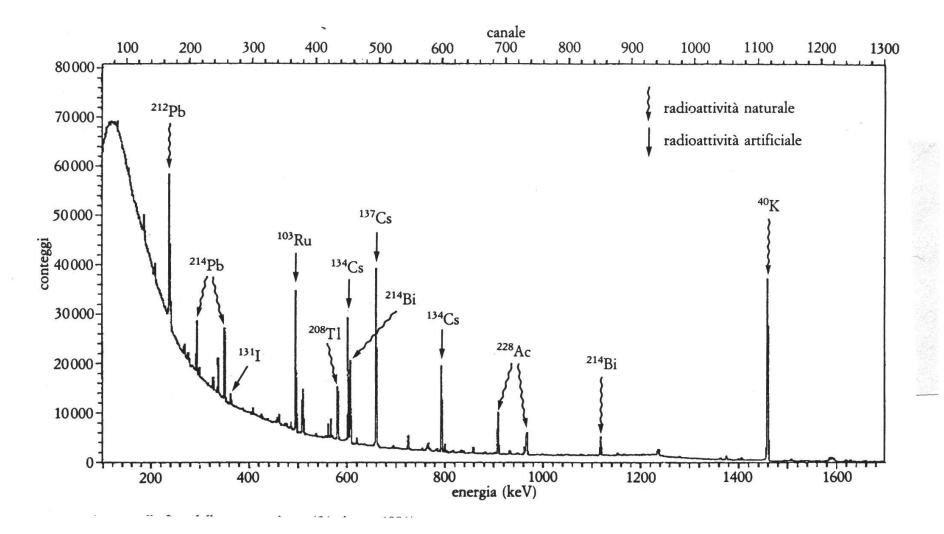



Fig. 28 - Evoluzione del pennacchio di Chernobyl tra il 26 aprile e il 6 maggio 1986. Nei due giorni successivi all'incidente le correnti in quota allungano la nube che si sprigiona dal reattore distrutto in direzione ovest/nord-ovest sulla Polonia e sulla Svezia, interessando nei giorni seguenti la Scandinavia, l'Olanda, il Belgio e la Gran Bretagna. Fra il 30 aprile e il 2 maggio la direzione dei venti prevalenti ruota prima verso sud-est e poi verso sud-ovest, portando la nube a interessare gran parte dell'Europa centrale, i Balcani e il Mediterraneo settentrionale. (Fonte: NEA-OCSE)


Afternoon of april 30 1986

30


May 2-3 1986

~~

31

26.6.1986

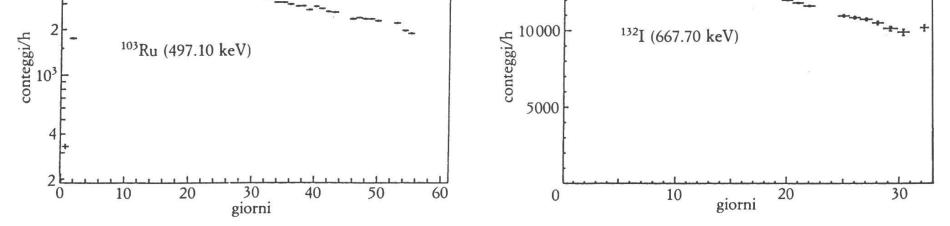
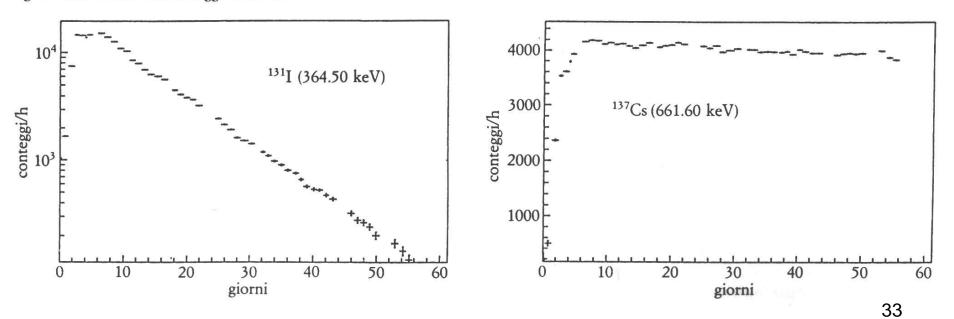



Fig. 4. - Andamento dei conteggi dovuti al ¹⁰³Ru.

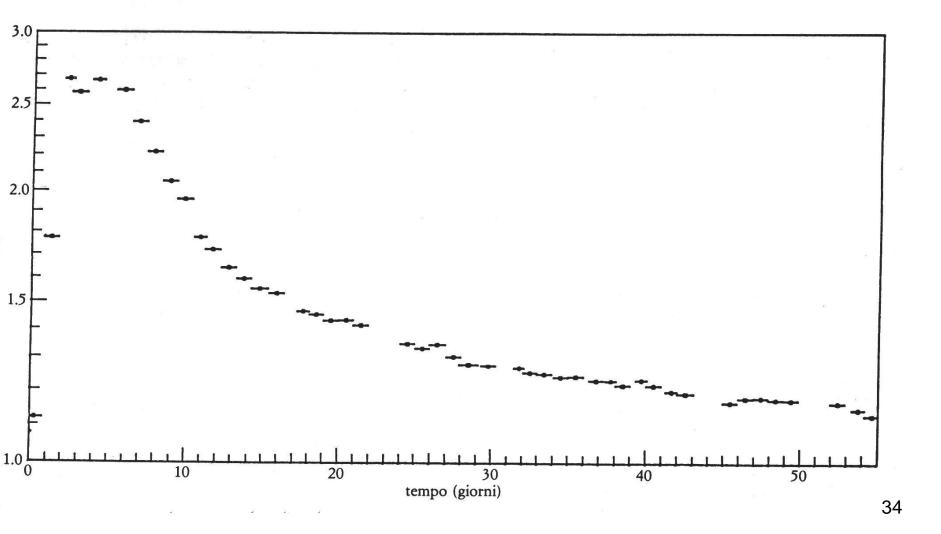
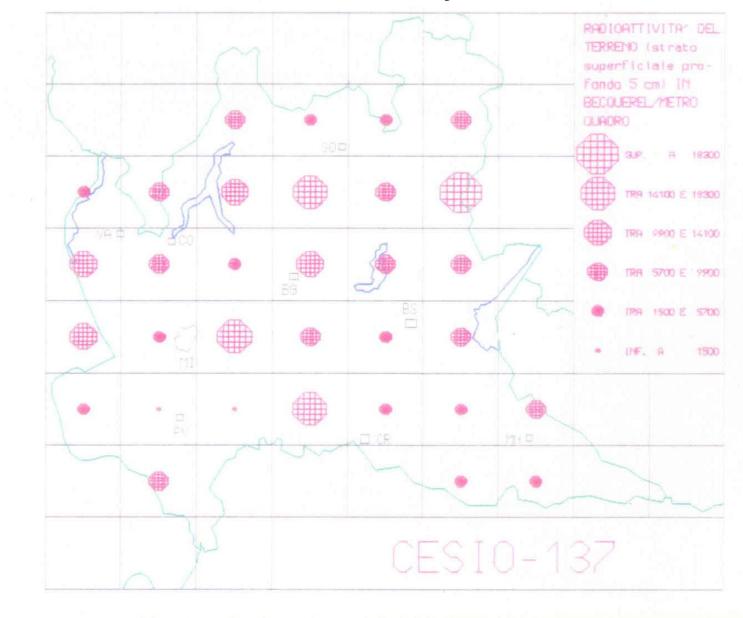
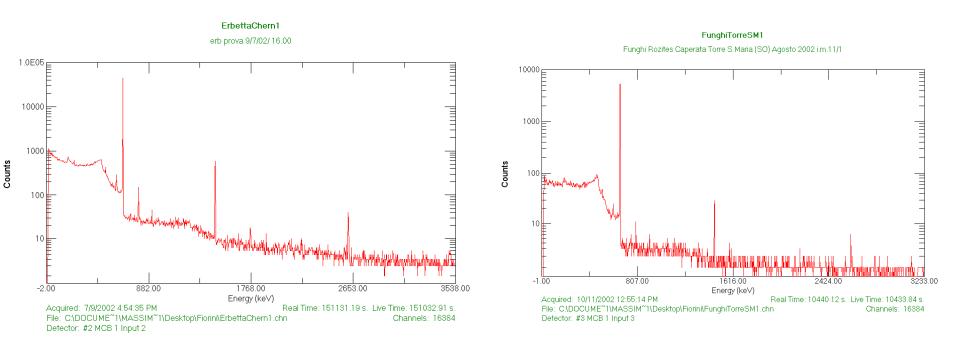


Fig. 5. - Andamento dei conteggi dovuti al ¹³¹I.


Fig. 7. - Andamento dei conteggi dovuti al ¹³⁷Cs.

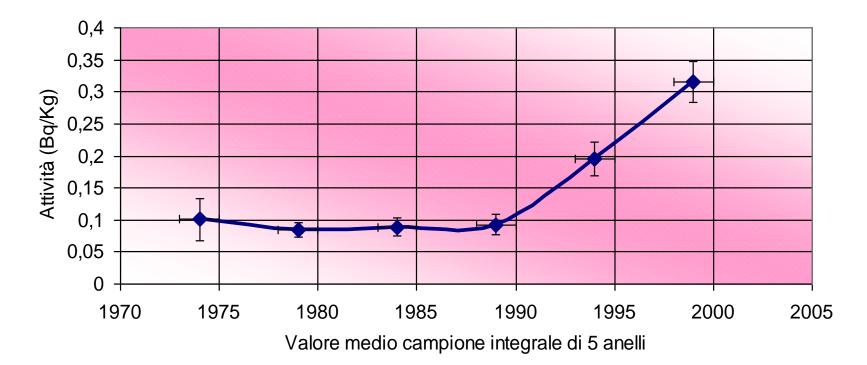
Global activity

¹³⁷Cs in Lombardy



Measurement on the top of Gran Sasso

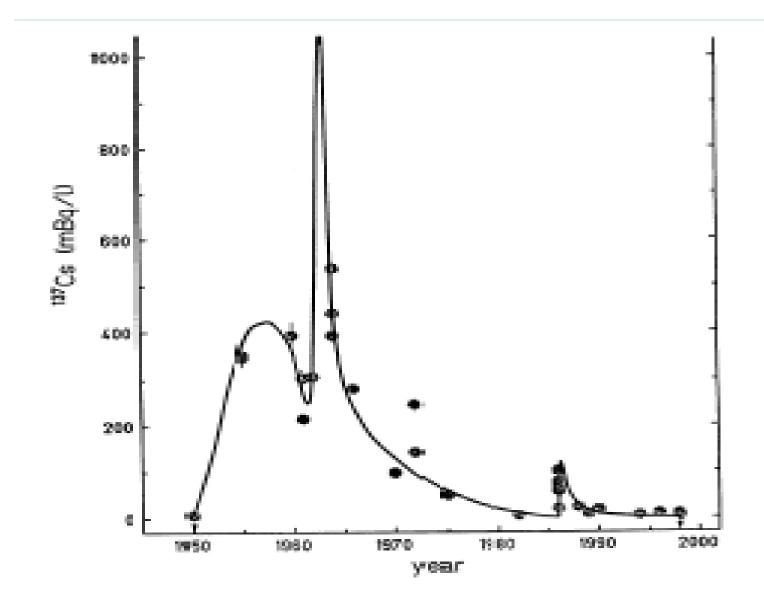
Measurements today



A (Larix) in the Minoprio park

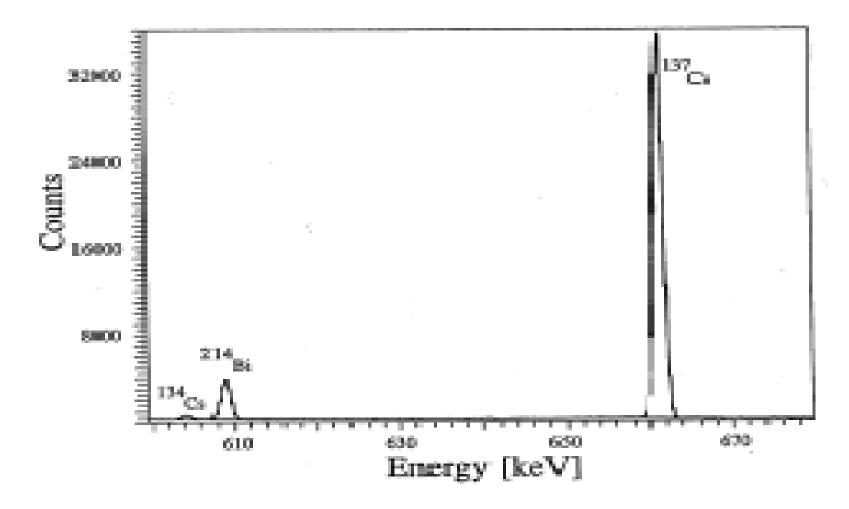
The corresponding ¹³⁷Cs activity as a function of the year

Larice Minoprio


Rozites Caperata

¹³⁷Cs in mushrooms

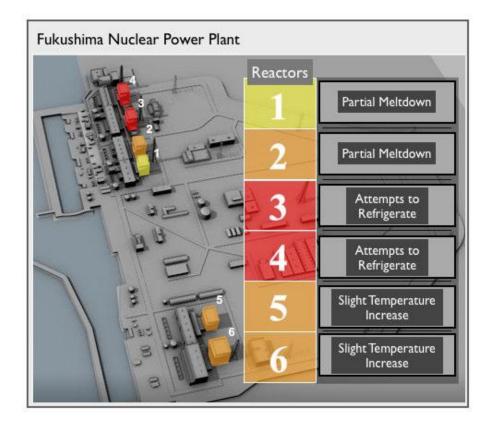
CAMPIONI	¹³⁷ Cs	¹³⁴ Cs	⁴⁰ K	TF	
CAMPIONI	(Bq/Kg)	(Bq/Kg)	(Bq/Kg)		
Cantharellus cibarius	36,6	0,08	85,59	0,08	
Boletus edulis	484,22	1,19	784,36	1,09	
Trichloma terreum	448,55	1,24	294,91	1,01	
Rozites Caperata	13133,11	33,62	1098,78	29,69	


Activity of ¹³⁷Cs in Bordeaux wine

Wine measurements in France

Origine géographique	A(¹³⁷ Cs) mBq/l	A(⁴⁰ K) Bq/l	R(¹³⁷ Cs/ ⁴⁰ K)
Entre Deux-Mers	8,9 (22)	35,0 (5)	0,0043 (10)
Côtes de Bourg	< 4	32,1 (3)	< 0,0017
Madiran	< 4	29,5 (3)	< 0,0020
Côtes du Roussillon	< 5	39,9 (5)	< 0,0019
Jurançon	6,1 (2,5)	24,2 (4)	0,0042 (17)

Thhe Spagnish accindent in June 1998


45

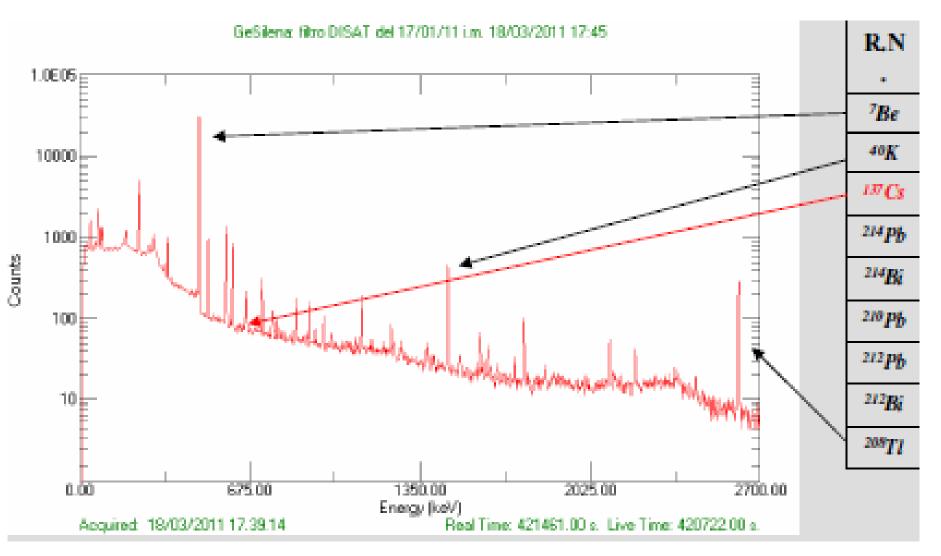
Loss of ¹³⁷Cs from a Spagnish foundry (1998)

Starting date of measurement	m ³ per hour	Contamination (Bq/m ³)
15.5.98	504 ±5	30 ± 4
15.6.98	9 ±1	1.0 ± . 2
4.7.98	11 ±1	1.3 ± . 2
20.7.98	13 ±1.5	1.6 ± .3
3.8.98	11.4 ± 15	.6 ± .1
27.10.98	15 ± 2	.5 ± .1

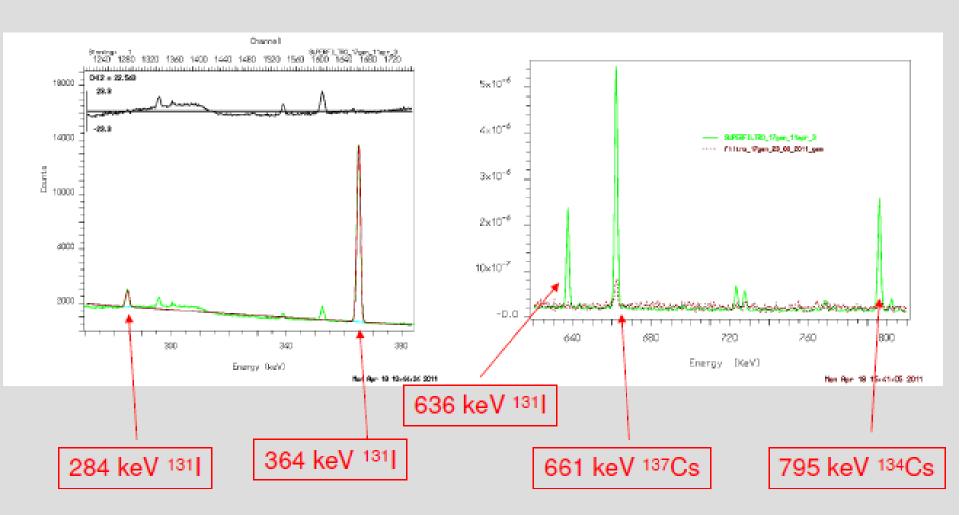
Fukushima

- ⇒ At 14,46 => 6,46 italian hour on march 11 2011 Earthquake magnitude 8.9
- \Rightarrow 55 reactors => involved 11
- \Rightarrow Fukushima reactors 1,2,3 si stop other 3 already stopped
- \Rightarrow Pressure increase => emission of radioactive gas
- \Rightarrow Evacuation from 30 km and measurement of ¹²¹I

April 15 2011

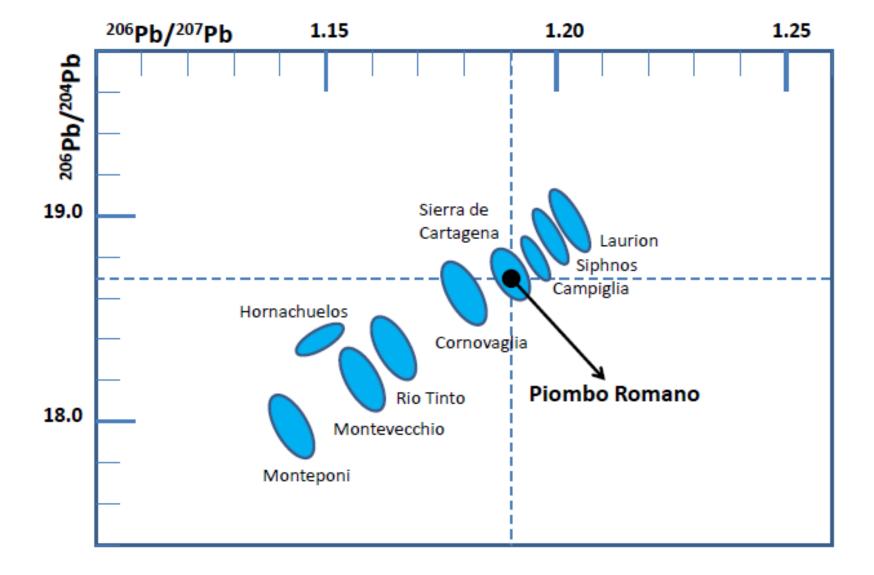

Unit	1	2	3	4	5	6
Power (MWe /MWth)	460/1380	784/2381	784/2381	784/2381	784/2381	1100/3293
Type of Reactor	BWB-3	BWR-4	BWR-4	BWR-4	BWR-4	BWR-5
Status at time of EQ	In service – auto shutdown	In service - auto shutdown	In service – auto shutdown	Outage	Outage	Outage
Core and fuel integrity	Damaged	Severe damage	Damaged	No fuel in the Reactor		Cold Shutdown Being maintained using off-
RPV & RCS integrity	RPV temperature high but stable	BPV temperature stable	RPV temperature stable	Not applicable due to		
Containment integrity	No information	Damage suspected	Damage suspected	outage plant status		
AC Power	AC power available - power to instrumentation - Lighting to Central Control Room	AC power available – power to instrumentation – Lighting to Central Control Room	AC power available – power to instrumentation – Lighting to Central Centrol Room	AC power available - power to instrumentation - Lighting to Central Control Room	Cold Shutdown	
Building	Severe damage	Slight damage	Severe damage	Severe damage		
Water level of RPV	Around half of Fuel is uncovered	Around half of Fust is uncovered	Around half of Fuel is uncovered			site electrical power and existing plant equipment.
Pressure of RPV	Increasing	Stable	Stable			
CV Pressure Drywell	Increasing	Stable	Stable	Not applicable due to outage plant status		
Water injection to RPV	Injection of freshwater – via mobile electric pump with off-site power	Injection of freshwater – via mobile electric pump with off-site power	Injection of freshwater – via mobile electric pump with off-site power			
Water injection to CV	No information	No information	No information		RPV: Reactor Pressure Vessel RCS: Reactor Coolant System	
Spent Fuel Pool Status	Fresh water injection by concrete pump truck	Freshwater injection to the Fuel Pool Cooling Line	Freshwater injection via Fuel Pool Cooling Line and Periodic spraying	Presh water injection by concrete pump truck		

Measurements in Milano-Bicocca


 \Rightarrow May 15-18 No activity apart ¹³⁷Cs (.5 Bq/m3)

First measurement

KEK,Milano,Seattle


Nucleo	КЕК		Milano-Bicocca		Seatte	
¹³¹ I	Data	μ Bq/m ³	Data	μ Bq/m ³	Data	μ Bq/m ³
	15-16.3	32-20 x 10 ⁶	24.3	3	17-18.3	32000
	18.3	0.5x 10 ⁶	25.3	110		
	20.3	23x 10 ⁶	26.3	150		
	22.3	9.6x 10 ⁶	29.3	400		
	23.3	1.9x 10 ⁶	30.3	140		
	24-25.3	.7x 10 ⁶	31.3	4		
	1.4	.1x 10 ⁶	1.4	33		
			2.4	23		
			3.4	19		
			4.4	4		
			5.4	29		
			8.4	4		
			11.4	6		
			13.4			

Nucleo	KEK Milano-Bicocca		Seatte	Seatte		
¹³⁴ Cs	Data	μ Bq/m ³	Data	μ Bq/m ³	Data	μ Bq/m ³
	15-16.3	.67 x 10 ⁶	26.3	3		
	18.3	0.001x 10 ⁶	28.3	80		
	20.3	7.3x 10 ⁶	31.3	2		
	22.3	.12x 10 ⁶	1.4	12		
	23.3	.1x 10 ⁶	2.4	11		
	1.4	.2x 10 ⁶	3.4	20		
			5.4	2		
			6.4	11		
			7.4	8		
			8.4	4		
			5.4	29		
			8.4	2		
			10.4	1		
			11.4	4		

Nucleo	KEK		Milano	Milano-Bicocca		Seatte	
¹³⁷ Cs	Data	μ Bq/m ³	Data	μ Bq/m ³	Data	μ Bq/m ³	
	15-16.3	.7 x 10 ⁶	26.3	8			
	20.3	7x 10 ⁶	28.3	92			
	22.3	.1x 10 ⁶	31.3	7			
	28.3	.2x 10 ⁶	1.4	13			
	30.3	.1x 10 ⁶	2.4	10			
			3.4	38			
		•	6.4	11			
			7.4	10			
			11.4	4			
			12.4	3			
			13.4	4			
			8.4	2			

Physicists as detectives

- \Rightarrow An ancient **crime** . Killing of **Napoleon**
- ⇒Ancient living and crimes=> archeometry
- \Rightarrow Recent **fakes** of archaeological objects and not only
- \Rightarrow Difference between **environmental** and
 - **natural** radioactivity. We are no more the same
- ⇒Monitoring and control of radioactive
 - pollution and accidents

