

LHC @ CERN

LHC per la prima volta a 13 TeV

C-C Bean 1 Bean 2 Interaction Point

Relative beam sizes around IP1 (Atlas) in collision

LEP e LHC @ CERN

LA LUNA

LEP a mezzanotte è circa $\sim 300 \ \mu m$ più lungo che a mezzogiorno

- \rightarrow e[±] vedono meno campo magnetico
- → E e' piu' piccola

LHC: Moon correction

["Moon corrections map": small differences in gravitational force across LHC diameter.]

LHC

LHCb

LHCb

LHCb

LHC

LHCb

LHCb detector

Punto di collisione e beam pipe

LHCb detector: tracking system

VELO

Silicon detector: 42 modules arranged along the beam, each providing a measurement of the r and ϕ coordinates.

Detector safety: modules retracted by 29 mm during

injection; 210 s to close; ~750 closing procedures in Run1

Performance (vertex reconstruction)

- decay time resolution: 45 fs
- impact parameter resolution: 20 μm

 nates.
during res in Run1
Opened at injection

VELO

Closed when stable beam declared

- Barbara Sciascia (INFN/LNF) - MasterClass (LNF) - 16 marzo 2018 -

19

VELO rz view

[Performance of the LHCb Outer Tracker <u>JINST 9 (2014) P01002</u>] [Measurement of the track reconstruction efficiency at LHCb <u>JINST 10 (2015) P02007</u>]

Tracking system

Inner (close to beam pipe): 3 stations, 4 plans of silicon μ -strip, 4.2 m².

Outer: 3 stations, 4 plans of straw tubes

Momentum resolution $\Delta p/p = 0.5\%-1\%$ (~0 GeV/c –200 GeV/c)

Warm **dipole** magnet, bending power: 4 Tm

- Two triplets of magnets to compensate for its effect in LHC.

OT: Outer Tracker

Track reconstruction

- Barbara Sciascia (INFN/LNF) - MasterClass (LNF) - 16 marzo 2018 -

LHCb detector: RICHs

Effetto Cherenkov

RICH1 (upstream of magnet): $2 GeV <math>[C_4F_{10}]$ RICH2 (downstream of magnet): $15 GeV <math>[CF_{10}]$ Kaon ID ~95% with pion misID ~10% integrated over 2 GeV

LHCb detector: calorimeter and muon systems

Calorimeter System

System of calorimeters to maximize γ/e and e/h separation ECAL, HCAL: scintillator + absorber material planes $\Delta E/E = 1 \% \oplus 10 \%/\sqrt{E}$ (GeV) Used in the first level of the trigger [L0]

Calorimetro

- Barbara Sciascia (INFN/LNF) - MasterClass (LNF) - 16 marzo 2018 -

[Performance of the Muon Identification at LHCb <u>JINST 8 (2013) P10020</u>] [Performance of the LHCb Muon system <u>JINST 8 (2013) P02022</u>]

Muon System

5 stations, each equipped with 276 multi-wire proportional chambers [different size]. Inner part of M1 equipped with 12 GEM detectors μ identification $\epsilon(\mu \rightarrow \mu) \sim 97$ %, mis-ID $\epsilon(\pi \rightarrow \mu) \sim 1-3$ % Used in the first level of the trigger [L0]

Muon System

Collect data (DAQ)

Hardware trigger

Collect data (DAQ)

[arXiv:1211.3055; CERN-LHCb-DP-2012-004] [arXiv:1310.8544v1]

- The average fraction of stable beams time per week was $\sim 30\%$

- Try to <u>defer computing needs</u> to time without beams

[arXiv:1211.3055; CERN-LHCb-DP-2012-004] [arXiv:1310.8544v1]

40

Trigger

~50k logical cores

~5PiB disk space

Same online and offline reconstruction and PID - prompt alignment and calibration - completely automatic and almost in real-time

Trigger buffer

~50k logical cores

From 2015 experience, ~1 disk per day is replaced due to unrecoverable errors: until 2015, mirror the 5 PiB of disk space in a second chunk of 5 PiB disks.

Un-mirroring the disks doubles our buffer with the risk of per mil loss of data: since 2016 total farm disk space is ~10PiB.

This means more data and/or more time to reconstruct them.

[LHCb-PAPER-2017-013]

 $\begin{bmatrix} 2.1 - 2.4 \text{ standard deviations from the Standard Model} \\ 0.660 \stackrel{+}{_{-}} \stackrel{0.110}{_{0.070}} (\text{stat}) \pm 0.028 (\text{syst}) & \text{for } 0.045 < q^2 < 1.1 \text{ GeV}^2/c^4 \\ \begin{bmatrix} 0.685 \stackrel{+}{_{-}} \stackrel{0.113}{_{0.069}} (\text{stat}) \pm 0.047 (\text{syst}) & \text{for } 1.1 & < q^2 < 6.0 \text{ GeV}^2/c^4 \\ 2.4 - 2.5 \text{ standard deviations from the Standard Model} \end{bmatrix}$

- R(D) and R(D*) combination at ~4σ from the SM
- Major updates are coming with Run-2 data

Beyond SM

PAPER-2017-017 PAPER-2017-017

New LHCb measurement gives $\mathcal{R}(D^{*-}) = 0.286 \pm 0.019 \pm 0.025 \pm 0.021$

Compatible with SM expectation

but also fully supporting previous measurements of high value

Event 41383468 Run 153460 Wed, 03 Jun 2015 11:52:09

Materia e Antimateria

Materia e Antimateria

Probabilità di "decadimento"

Tempi di dimezzamento e vita media

Table 31.2	Some Half-Lives for Radioactive Decay				
Isotope		Half-Life			
Polonium	²¹⁴ ₈₄ Po	$1.64 \times 10^{-4} \mathrm{s}$			
Krypton	⁸⁹ ₃₆ Kr	3.16 min			
Radon	²²² ₈₆ Rn	3.83 d			
Strontium	90 Sr	29.1 yr			
Radium	²²⁶ ₈₈ Ra	1.6×10^3 yr			
Carbon	¹⁴ ₆ C	$5.73 \times 10^{3} \text{ yr}$			
Uranium	²³⁸ ₉₂ U	$4.47 \times 10^9 \text{ yr}$			
Indium	¹¹⁵ ₄₉ In	$4.41 \times 10^{14} \text{ yr}$			

$$N = N_0 \cdot e^{-\frac{t}{\tau}} \implies \tau = \frac{T_{1/2}}{\ln 2} = \frac{T_{1/2}}{0.693}$$

Vita media: $t \sim 0.4$ ps Velocità: $v \sim c (0.9992)$

Lunghezza: classica: $v \times t \sim 0.12 \text{ mm}$ relativistica: $\sim 3 \text{ mm}$

- Barbara Sciascia (INFN/LNF) - MasterClass (LNF) - 16 marzo 2018 -

Cinematica

Particle Data Group

$$m_{D^0}^2 = m_K^2 + m_{\pi}^2 + 2\sqrt{m_K^2 + p_K^2}\sqrt{m_{\pi}^2 + p_{\pi}^2} - 2p_K p_{\pi} \cos\vartheta$$

D⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m = 1864.84 \pm 0.05$ MeV $m_{D^{\pm}} - m_{D^0} = 4.77 \pm 0.08$ MeV Mean life $\tau = (410.1 \pm 1.5) \times 10^{-15}$ s $c\tau = 122.9 \ \mu m$ $\left| m_{D_1^0} - m_{D_2^0} \right| = (0.95^{+0.41}_{-0.44}) \times 10^{10} \ \hbar \ s^{-1}$ $(\Gamma_{D_1^0} - \Gamma_{D_2^0})/\Gamma = 2y = (1.29^{+0.14}_{-0.18}) \times 10^{-2}$ $\left| q/p \right| = 0.92^{+0.12}_{-0.09}$ $A_{\Gamma} = (-0.125 \pm 0.526) \times 10^{-3}$ $K^+ \ \pi^-$ relative strong phase: $\cos \delta = 0.97 \pm 0.11$ $K^- \ \pi^+ \ \pi^0$ coherence factor R $r = 0.82 \pm 0.07$

D ⁰ DECAY MODES	F	Fraction (Γ_i/Γ)		Sc Confic	Scale factor/ p Confidence leve(MeV/c)	
	Topolog	gical m	odes			
0-prongs	[aaa]	(15	\pm 6) %	17 <u>-</u> 11	
2-prongs		(70	\pm 6) %	17 <u>—</u> 11	
4-prongs	[bbb]	(14.5	\pm 0.5)%	_	
6-prongs	[ccc]	(6.4	\pm 1.3	$) \times 10^{-4}$	37 <u>—</u> 32	
	D ⁰ DECAY MODES 0-prongs 2-prongs 4-prongs 6-prongs	D ⁰ DECAY MODES F Topolog 0-prongs [aaa] 2-prongs [bbb] 6-prongs [ccc]	D0 DECAY MODESFractionTopological me0-prongs[aaa] (152-prongs(704-prongs[bbb] (14.5)6-prongs[ccc] (6.4)	D^0 DECAY MODESFraction (Γ_i/Γ) Topological modes0-prongs $[aaa]$ (15 ± 6) 2-prongs (70 ± 6) 4-prongs $[bbb]$ (14.5 ± 0.5) 6-prongs $[ccc]$ (6.4 ± 1.3)	D^0 DECAY MODES Fraction (Γ_i/Γ) Confid Topological modes Confid 0-prongs [aaa] (15 ± 6) % 2-prongs (70 ± 6) % 4-prongs [bbb] (14.5 ± 0.5) % 6-prongs [ccc] (6.4 ± 1.3) × 10 ⁻⁴	

http://pdg.lbl.gov

