

CHARACTERIZATION OF THE OPTICAL PERFORMANCE OF LASER RETROREFLECTORS FOR SATELLITE AND LUNAR LASER RANGING TECHNIQUES

LNF - 02.04.19 | INSPYRE school

Chiara Mondaini

A little bit of me..

- Born & raised in Rome
- Wonderful family
- American mother

- Operating mechanisms of things
- Classical-Linguistic High School

<u>History of Art</u> or <u>Aerospace Engineering?</u>

The space &... The National Laboratories of Frascati..

My work at LNF in the SCF_Lab ScF_Lab Satellite/Lunar/GNSS Iaser ranging/altimetry and Cube/microsat Characterization Facilities Laboratory

- · Clean Room
- Space Environment
- Test

Laser Retroreflectors

The SCF_Lab at INFN-LNF

What is Laser Ranging?

LLR/SLR concept: Laser \rightarrow receiving telescope \rightarrow time of flight

Accurate technique to measure the position of objects in space

What are the Retroreflectors?

- Fused silica prisms cut as a corner of a cube (or hollow manufacturing),
- <u>They reflect light goes back to the same</u> incident direction.
- Every CCR back face forms and angle of 90°
 with the two other faces.
 - Back faces may be "naked" or metal coated.
- · Can be arranged in "arrays".
 - The diffraction patterns are analyzed to study their optical performances in Space.

What are the Retroreflectors?

SCF-Test at INFN-LNF

- 1. New thermal-optical-vacuum test procedure for retroreflectors 2. Space conditions accurately simulated in the Laboratory
- The payload is subject to:
 - Thermal control of the reflector aluminum housing (300K)
 - Vacuum (10-6 mbar)
 - Sun illumination (several h SUN ON, several h SUN OFF)
 - · Laser interrogation during SUN OFF
 - FFDP & Fizeau Interferograms
 - Non-invasive IR Thermometry (FLIR Thermacam 640...)
 (CCR Thermal relaxation constant ...)

SCF-Test at INFN-LNF

Example of FFDP

SINGLE-REFLECTOR GNSS 'CRITICAL' ORBIT SCF-TEST

FFDP

Thermograms

shadov

Earth

1h

GNSS Critical Orbit (GCO): GNSS orbit with nodes parallel to Sun-Earth direction. Sunrise-Eclipse-Sunset probes critical features of CCR thermal and optical behavior, including optical breakthrough.

Galileo orbit:

CODE V Simulations of Optical Cross Section (OCS) 'intensity

CODE V is a software for optical design, analysis and model of optical systems for diverse applications.

Simulations for nominal COTS DAO centered around 0.0 arcsec

Simulated FFDP of a COTS CCR

Simulated OCS intensity (averaged over the azimuth in the FFDP plane) vs. VA (Velocity Aberration) of a COTS CCR

Simulated OCS intensity at a specific VA = 35 μrad

Lunar Laser Ranging

Laser Ranging on Mars & beyond..

Insight

ExoMars 2020

Schiaparelli

Satellite/GNSS and Lunar LASER RANGING

Matera Laser Ranging Observatory 1.5 m telescope @ASI - CGS

Moon

LEO

GNSS

Team work...

Thank you for your attention..

Coming together is a **BEGINNING**, Keeping together is **PROGRESS**, Working together is **SUCCESS**..

LNF, INSPYRE 2019

Henry Ford

<u>Searching for the the deepest mechanisms...</u>

<u>Results through Fizeau Interferometry</u>

Measure Mo	dify Analysis	Oupley Toe	it: Window H	lelp.					
1010 1			A3 (= 🖬 🔁	ZON	de d'a 3		1. 1
and set of the set of the				<u>এখা গান</u>	XONAL .				
			a state T				1		
		-	-				-		
	Ξ						-	-	-
					arm I				
0.00		-	2				100	10.000	100
		-			V Show (
- 615 -					AATES T			~	
								- \	
							-		-
1002-4		1. 4			area I			-	-
1 3	Ecti	moto c	ftho 3		ibodral A	ngla Off	cot)	10 C.10	
Dihedhal Angle	Estern L'SU		n the 5	DAO (D	incural A		501)		
Islands		(artsec)			Sign		0		
80-0		0.20194	20184		abition .		+05		
+ (2 + 1)		6.71212	_			11 1000010	-200		
Invoration	STREET		Inte	rferomet	ric meas	urements	to analy	ze quality	/ and
Island P-V RPS		stes.	distribution of the laser return intensity.						
	0.70001	1.12471	As a fu	nction o	f varving	SCF env	vironmer	ntal condi	tions
	0.71100	0.1000E	- 15 00 10			, ~ ~ ~ ~			
	0.50142	0.0768	6.69637	8.82962	3.040	#9.31	40,791	1.797	
	0.75494	8.15983	2.224	-6.36640	2.040	-6.832	40519	2.308	