CENTER FOR **SENSORS & DEVICES** 





# Nanotechnology for environmental monitoring

A. Gaiardo, P. Tosato, M. Valt **Center for Sensors & Devices** Fondazione Bruno Kessler



mvalt@fbk.eu www.fbk.eu





Carbon Dioxide; 0.4150% Neon:0.0018% Helium: 0.00052% Methane: 0.00019% Krypton;0.00011%

\*Water vapour accounts for 0% to 5%, averaging around 0.4%.



# Air quality monitoring: pollutants and GHG

### Particle pollution: Particulate matter (PM)

Mixture of solid particles and liquid droplets found in the air. Some particles, such as dust, dirt, soot, or smoke, are large or dark enough to be seen with the <u>naked eye</u>.



PM 10: diameter lower than 10 um PM 2.5: diameter lower than 2.5 um

Effect on body: group 1 carcinogen

### **Gaseous pollutants**

Gas molecules (chemical species) that may lead to adverse health effects for humans.

 $NO_2$ , NO,  $NH_3$ , CO, BTX,  $SO_2$ ,  $O_3$ , VOCs

**Toxic concentration: ppm, ppb** 

Sources: human activities or natural phenomena

Effect on body: cardiovascular disease, stroke, lung disease



**Greenhouse gases** Gases that trap heat in the atmosphere and warm the planet!



How much any one greenhouse gas influences global warming depends on:

- Concentration (ppm, ppb or ppt)
- Lifetime
- Global Warming Potential (GWP)

### CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, halocarbons

# **Enviromental protection agency Monitoring Network**



=5<

### https://www.appa.provincia.tn.it/

# **Particulate Matter:** Aerodynamic Diameter

Establishing a particle size definition for irregularly shaped particles necessitates the use of a standardized measure referred to as the aerodynamic diameter, measured in microns or micrometers (µm), a unit equal to one millionth of a meter. The graph at the right shows the distribution of the 4 main particle size categories, with the categories historically and currently regulated by EPA indicated below. By comparison, a human hair is approximately 70 microns in diameter.



# What is Particulate Matter?



(a) Particle of biological origin, identified in the PM2.5-10
 (b) Soot particle, identified in the PM2.5-10 (b)
 (c) Cubic-shaped particle, identified in the PM2.5-10
 (d) Particle characteristic of soil resuspension and particle possibly originated from anthropic sources, both identified in the PM2.5-10

**Particulate matter (PM)** describes a wide variety of airborne material. PM pollution consists of materials (including dust, smoke, and soot), that are directly emitted into the air or result from the transformation of gaseous pollutants. Particles come from natural sources (e.g., volcanic eruptions) and human activities such as burning fossil fuels, incinerating wastes, and smelting metals.

### Where does PM originate?

Sources may emit PM directly into the environment or emit **precursors** such as **sulfur dioxide (SO<sub>2</sub>), nitrogen dioxide (NO<sub>2</sub>), and volatile organic compounds** (VOCs), which are transformed through atmospheric chemistry to form PM.



Mobile Sources (vehicles) VOCs, NO<sub>2</sub>, PM



Area SourcesNatural Sources(drycleaners, gas stations)(forest fires, volcanoes)VOCsPM

=5<





**Stationary Sources** (factories) NO<sub>2</sub>, SO<sub>2</sub>, PM

# **Particulate:**

UNI EN 12341:2014 "Ambient air - Standard gravimetric measurement method for the determination of the PM10 or PM2,5 mass concentration of suspended particulate matter"









# Laser-based optical particulate sensor **Measurement principle**

This measurement principle is based on laser light scattering. Airflow is generated inside the sensor with the aid of a fan. This airflow carries particulate matter in the ambient air from the inlet of the sensor to the outlet. Near the photodiode, the particles in the airflow pass through a focused laser beam, scattering the laser's light. A photodiode converts this scattered light into an electrical signal, which is then converted on the internal microcontroller into an output value for the matter's mass and concentration using algorithms.





### John William Strutt, 3rd Baron Rayleigh

- British physicist
- known especially for the
  - Rayleight scattering in 1871.



In the last decades, pollutant gases have been strongly decreased in the atmosphere. However, some of them still exceed the limitations recommended by policy makers, including in EU.



2-4 4-8 > 8 No data Outside study area





BTX (benzene, toluene, ethylbenzene and xylene)

process

page

](

# EU air quality map

# https://airindex.eea.europa.eu/Map/AQI/Viewer/





# **Electromagnetic spectrum**



The electromagnetic (EM) spectrum is the range of all types of EM radiation. Radiation is energy that travels and spreads out as it goes – the visible light that comes from a lamp in your house and the radio waves that come from a radio station are two types of electromagnetic radiation. The other types of EM radiation that make up the electromagnetic spectrum are microwaves, infrared light, ultraviolet light, Xrays and gamma-rays.



400nm



700nm

# **Light – Matter interaction**



### What may happen when light strikes an object?

- "color" white.
- colorless object. Glass is an example of this.

1. All wavelengths of the light may be entirely reflected from the surface, which would result in what we perceive as the

2. All wavelengths may be entirely absorbed by the object, which would result in what we perceive as the "color" black. 3. The light may be completely transmitted through the object, with little interaction, resulting in what we call a 4. Some wavelengths can be reflected and others absorbed, resulting in the appearance of the different colors.

# Chemilumiscence

Chemiluminescence refers to light which is emitted after excitation of a molecule during a chemical reaction. It is being used in the analysis of nitrogen gases.

Nitrogen monoxide reacts with ozone to excited nitrogen dioxide.





# **Light – Matter interaction**

- IR light interacts with the sample molecules (e.g. water). •
- Depending on its energy, IR radiation can trigger the vibration of specific molecular bonds (absorbtion).





**Symmetric Stretch Vibration** 



**Anti-symmetric Stretch Vibration** 



Vibration

# **NDIR Working principle**

|   | H |    | F |
|---|---|----|---|
| - | _ | 1. | _ |

### Requirements for IR Absorption

- Lower quantum levels must be "populated" ٠
- Dipole moment (degree of charge imbalance) must change . with the vibrational "motion"
  - CO<sub>2</sub> and CH<sub>4</sub> absorb IR
  - Homonuclear diatomics such as H<sub>2</sub> DO NOT absorb IR
  - Also IR-transparent:



• Ar

**GfG Instrumentation** 

November 2009 Principles of gas detection Slide 133

### • IR fingerprint of gas molecules



Absorption spectra for five gases in the mid IR region of the spectrum (all at 100% vol), taken from the PNNL database, from Optical gas sensing: a review; Jane Hodgkinson and Ralph P Tatam 2013 Meas. Sci. Technol. 24 012004 doi:10.1088/0957-0233/24/1/012004



# **Monitoring Pollutants from the space Copernicus EU programme**

Sentinel-5P provides timely data on a multitude of trace gases that can affect our health such as nitrogen dioxide and carbon monoxide. It will also measure sulphur dioxide, which mainly comes from industrial processes and motor vehicle emissions, but can also be in volcanic plumes.

What sets Tropomi apart is that it measures in the ultraviolet and visible (270-500 nm), near-infrared (675–775 nm) and shortwave infrared (2305–2385 nm) spectral bands. This means that a wide range of pollutants such as nitrogen dioxide, ozone, formaldehyde, sulphur dioxide, methane and carbon monoxide can be imaged more accurately than ever before. With a resolution as high as 7 km × 3.5 km, it has the potential to detect air pollution over individual cities.



**Only Stratospheric Ozone** 

https://maps.s5p-pal.com/no2/







# **Pros and Cons**

- **1.** Accuracy: Extreme precision and repeatability of the measure
- 2. Calibration: Periodic calibration must be done on all sensor types. However, on laboratory units, as long as the zero is maintained, the unit is assured a good response and good span accuracy. Because of this characteristic, abnormal functioning of a unit can be easily determined.
- **3.** Life Expectancy: A well-designed unit has a life expectancy of more than 10 years.
- 4. Continuous Exposure to Gas: The functional components are protected by the optical parts, which are basically inert to most chemicals.

# **BUT EXPENSIVE**

(10-20k€)







=5<

# **Composition of air**







#### **Problem statement**

## Air quality monitoring: physical dimensions

Typical <u>concentrations</u> at which a pollutant begins to <u>be harmful to humans</u>: **part per million by volume** (ppmv) – part per billion by volume (ppbv)

Standard units of measurement used by EPA = mg/m<sup>3</sup> and µg/m<sup>3</sup>

$$mg/m^3 = ppmv \cdot \frac{M}{(0.082057338 \cdot T)}$$

Convorcion

*M* = molecular mass *T* = air temperature (*K*)

> Example Carbon monoxide (CO) M<sub>(CO)</sub> = 28.01 g/mol T = 298 K

|                               |                          | EU Air Quality Directives |               |                                                                         |
|-------------------------------|--------------------------|---------------------------|---------------|-------------------------------------------------------------------------|
| Pollutant                     | Averaging period         | Objective                 | Concentration | Comments                                                                |
|                               |                          |                           |               |                                                                         |
|                               |                          |                           |               |                                                                         |
| PM <sub>2.5</sub>             | 24-hour                  | Target value              |               |                                                                         |
| PM <sub>2.5</sub>             | Annual                   | Limit value               | 25 μg/m³      |                                                                         |
| PM <sub>2.5</sub>             | Annual                   | Indicative limit value    | 20 μg/m³      |                                                                         |
| PM <sub>10</sub>              | 24-hour                  | Limit value               | 50 μg/m³      | Not to be exceeded on more than 35 days/year                            |
| PM <sub>10</sub>              | Annual                   | Limit value               | 40 µg/m³      |                                                                         |
| 03                            | Max. daily 8-hour mean   | Target value              | 120 µg/m³     | Not to be exceeded on more than 25 days/year<br>(averaged over 3 years) |
| 03                            | Max. daily 8-hour mean   | Long-term objective       | 120 µg/m3     |                                                                         |
| 03                            | 8-hour                   | Target value              |               |                                                                         |
| 03                            | Peak season <sup>a</sup> | Target value              |               |                                                                         |
| NO <sub>2</sub>               | Hourly                   | Limit value               | 200 μg/m³     | Not to be exceeded on more than 18 hours/year                           |
| NO <sub>2</sub>               | Annual                   | Limit value               | 40 µg/m³      |                                                                         |
| NO2                           | 24-hour                  | Target value              |               |                                                                         |
| SO2                           | Hourly                   | Limit value               | 350 μg/m³     | Not to be exceeded on more than 24 hours/year                           |
| SO2                           | 24-hour                  | Limit value               | 125 μg/m³     | Not to be exceeded on more than 3 days/year                             |
| со                            | Max. daily 8-hour mean   | Limit value               | 10 mg/m³      |                                                                         |
| со                            | 24-hour                  | Target value              |               |                                                                         |
| C <sub>6</sub> H <sub>6</sub> | Annual                   | Limit value               | 5 μg/m³       |                                                                         |
| BaP                           | Annual                   | Target value              | 1 ng/m³       | Measured as content in PM <sub>10</sub>                                 |
| Pb                            | Annual                   | Limit value               | 0,5 μg/m³     | Measured as content in PM <sub>10</sub>                                 |
| As                            | Annual                   | Target value              | 6 ng/m³       | Measured as content in PM <sub>10</sub>                                 |
| Cd                            | Annual                   | Target value              | 5 ng/m³       | Measured as content in PM <sub>10</sub>                                 |
| Ni                            | Annual                   | Target value              | 20 ng/m³      | Measured as content in PM <sub>10</sub>                                 |

#### EU policy

### Perchè investigare sensori di gas innovativi?

Pollutant gases: NO<sub>2</sub>, NO, NH<sub>3</sub>, CO, SO<sub>2</sub>, BTX, SO<sub>2</sub>



Greenhouse gases: CO<sub>2</sub>, O<sub>3</sub>, CH<sub>4</sub>, N<sub>2</sub>O, fluorocarburi





High costs

## Perchè investigare sensori di gas innovativi?



# Why gas sensors?

#### Lack of high-performing, low cost and portable sensing platform

<u>Resolution 13/3/2019</u>: EU calls on the Commission and the Member States to support research, development and certification at EU level for innovative smart multi-sensor systems for air quality monitoring. Smart air quality monitoring systems can be a viable tool for citizen science, and also of special benefit for people suffering from asthma and cardiovascular diseases

#### Solid state gas sensors

#### Thermometric



- High stability
- Low cost
- High durability
- Low selectivity
- Low sensitivity
- High power consumption

#### Optical gas sensors



- High selectivity
- High sensitivity
- Expensive
- Bulky

#### Quartz microbalance



- High sensitivity
- Low cost
- Low power consumption
- Low selectivity
- Low durability
- Low stability

#### Electrochemical



#### High stability

- High sensitivity
- Suitable for MF
- Low cost
  - Low selectivity
  - High power consumption

# OUTLINE



page

07



## **Receptor-Transducer mechanism in a chemical sensor**

#### • Receptor:

*"The chemical information is transformed, by the sensor into a form of energy, which may be measured by the transducer"* 

• Transducer:

*"Transforms the energy carrying the chemical information about the sample into a useful analytical signal." "The transducer as such does not work as a sensor"* 

Separator: can be included in a sensor,
e.g. a membrane

Separator Receptor Transducer

### **Receptor-Transducer mechanism in a chemical sensor**



The receptor is usually a reactive material



<u>Physisorption</u> = only involves physical interactions between analyte and sensing layer) <u>Chemisorption</u> = involves a chemical reaction between the surface and the analyte

The reaction occurring between sensing material and analyte (gas) is transform into a readable electrical signal





### **Chemoresistive Gas Sensors**

Detection of **low gas concentrations** through a **change of resistance in nanostructured semiconducting** materials in thermal- or photo-activation mode.

The materials most *widely used* so far are the *MOX semiconductors* 

#### Advantages

- High thermal stability
- Easy to synthesize in nanometric scale
- <u>Reversible surface</u>
   <u>reaction in</u>
   <u>temperature</u>
- Excellent sensitivity
- Fast response and recovery
- <u>Small dimensions and</u> <u>simple integration in</u> <u>IoT platforms</u>
- <u>Low costs of</u> <u>manufacturing</u>



- The chemoresistive gas sensors are used in different **applications**:
  - > control units for the **indoor/outdoor air quality monitoring**;
  - analysis and diagnosis of clinical disease with noninvasive methods.



### Chemoresistive Gas Sensors: Main Components

**Sensing Material => Receptor** and **Transducer** of the Surface Chemical Reaction









Substrate => Triple Role: Mechanical Support, hosts Heater and Electrodes for the sensing material signal read-out













page

013

#### **Chemoresistive gas sensors**

## What is a semiconductor?



Band gap: distance between the valence band of electrons and the conduction band. Essentially, the band gap represents the minimum energy that is required to excite an electron up to a state in the conduction band where it can participate in conduction

**Conductors**: allow the current flow due to the presence of free electron or ions which starts moving when voltage is applied.

**Semiconductor**: a material whose conductivity lies between conductor and insulator. Energy must be apply in order to push electrons from the valence to the conduction band, increasing the material conductivity

Insulator: a material that does not allow the flow of current.

#### FBK gas sensors group



## What is a semiconductor?

Basic materials for the development of modern-day technologies! Silicon = basic material for microchips

The electrical conduction inside semiconductors is due to the movement of electrons and holes

n-type semiconductors: charge carriers = electrons p-type semicoductors: charge carriers = holes



The **sensing material** is a **nanostructured semiconductor**, so it needs **to be ACTIVATED to work properly** 

## What is a nanostructured material?

**Nanomaterial:** material composed of particles consisting of atomic or molecular aggregates with a diameter of approximately 1 to 100 nm

Produced and used for nanotechnology development



Copyright: 2016 © European Chemicals Agency



#### Advantages:

- 1) Very high surface area-to-volume ratio
- 2) Different chemical and physical properties compared with macromaterial

#### **Sensing material**

### **Sensing materials**

The most widely used **semiconductors** as sensing materials **are METAL OXIDES (MOX) = metal + oxygen** 

- Wide range of choices (SnO<sub>2</sub>, WO<sub>3</sub>, ZnO, TiO<sub>2</sub>, etc.).
- Simple and low-cost syntheses

#### Advantages in using as a sensitive material:

- High sensitivity
- High thermal stability
- Reversible surface reactions in activation
- Fast responses to the presence of gases

#### Chemoresistive properties can be activated by:

- Heating = thermo- activation
- Electromagnetic radiation (light) = photoactivation







#### Sensing material

### **Nanostructured MOX: Synthesis**



Synthesis process

- Solvent effect (PEG, alfa-terpineol)
- Reagents (metal-organics)
- ➢ pH control
- Complexing agent

- Heat treatments
  - > Temperature
  - > Timing
  - Atmosphere

High control of morphology and crystal structure





page

019
### Substrate

## **Substrate**

Triple Role: Mechanical Support, hosts Heater and Electrodes for the sensing material signal read-out



Optimization of the substrate over the time:

Decrease of power consumption
 Size decrease

Integration into portable devices



=5<

### Substrate







6" silicon wafer: 1350 microheaters

## **Joule heating**

Joule heating, also known as resistive, resistance, or Ohmic heating, is the process by which the passage of an electric current through a conductor produces heat.

Joule's first law states that the power of heating generated by an electrical conductor equals the product of its resistance and the square of the current:

 $P = I^2 * R$ 

Why?: <u>A potential difference (V) between two points of a conductor creates an electric</u> field that **accelerates charge carriers (e.g. e<sup>-</sup>)** in the direction of the electric field, giving them kinetic energy. <u>When the charged particles collide with the conductor lattice</u>, **energy is being transferred from them to the material**!









page

023

## **Sensor production @ FBK**



### Microfabrication process of silicon MH





### Sensing material deposition



### Ball bonding and Packaging





Sol gel synthesis of nanostructured MOX, MOX decoration, preparation of other semiconductors







## **MOX Chemoresistive gas sensors: Gas – Surface Interaction**



page 025





CENTER FOR SENSORS & DEVICES

## Nanotechnology for environmental monitoring Hands-on

### Pietro Tosato, Matteo Valt, Andrea Gaiardo

Center for Sensors & Devices Fondazione Bruno Kessler

Inspyre, March 29-30 2023

ptosato@fbk.eu www.fbk.eu

## Agenda

- Chemoresistive sensors
- Electronics for sensors readout
- Hands-on with ST Nucleo





Chemoresistive sensor, mounted on a TO package

# That's like a commercial sensor





4

=5<



## Technology



## Sensing material

It's a MOX nano-structured paste, interact with specific types of gas

2 Substrate Mechanical support

Mechanical support, heater and electrical circuit

# Sensor – pysical characteristics

We built a lot of different sensors, every one has different characteristics

- LaFeO3 **→ <100 kOhm**
- STN → >100 MOhm
- WO3 → ~10 Mohm

## It varies with temperature!

And gas concentration, clearly.

We are going to measure its resistance





Again, we have different layout of the silicon, that are designed for different temperature setpoints, usually characterized at the wafer level

Electronics must find a sweet spot where the sensor should operate: The membrane is fragile, can break with thermal shock or overtemperature

Usually 80-120 Ohm at 3.5-4.5 V → max 200mW

### Sensor



### Heater

It is powered by a dedicated circuit, heat up the sensor at the right temperature. On the board is available a DAC that can be used to this purpose.



### MOx sensible layer

Thanks to a 1.024 V reference, it is possible to measure the **resistance** of the sensor. The current flowing in the sensor is amplified and read by an ADC.

# Electronics

### What electronics do

- 1. Measure a low current (or high resistance)
- 2. Supply variable voltage at the heater
- 3. Measure resistance at the heater side
- 4. Multiply it for different channels (2 in our case)
- 5. Processing and communication...



## **ADC** and **DAC**

In <u>electronics</u>, an analog-to-digital converter (ADC, A/D, or A-to-D) is a system that converts an <u>analog</u> signal, such as a sound picked up by a <u>microphone</u> or light entering a <u>digital camera</u>, into a <u>digital</u> signal. In <u>electronics</u>, a digital-to-analog converter (DAC, D/A, D2A, or Dto-A) is a system that converts a <u>digital signal</u> into an <u>analog</u> <u>signal</u>. An <u>analog-to-digital</u> <u>converter</u> (ADC) performs the reverse function.

### **Arduino**



### WHAT IS ARDUINO?

Arduino is an open-source electronics platform based on easy-to-use hardware and software. It's intended for anyone making interactive projects.

### Learn more about Arduino



### ARDUINO BOARD

Arduino senses the environment by receiving inputs from many sensors, and affects its surroundings by controlling lights, motors, and other actuators.

### Discover the official Arduino boards

| >    | $\checkmark$ $\rightarrow$ | v |
|------|----------------------------|---|
| ·    | 14                         |   |
| -    | void setup()(              |   |
| := . | }                          |   |
|      |                            |   |
| ·    | unid Jam Od                |   |
|      | Apro Toob()/               |   |
|      | }                          |   |
|      |                            |   |
|      |                            |   |
|      |                            |   |
|      |                            |   |
|      |                            |   |
|      |                            |   |

### ARDUINO SOFTWARE

You can tell your Arduino what to do by writing code in the Arduino programming language and using the Arduino development environment.

### Download the Arduino Software

## **Development board**

STMicroelectronics Nucleo-F401

STM32F401RE 32-bit Cortex®-M4 CPU with FPU frequency up to 84 MHz 512 Kbytes of Flash memory

USB connection and debugger on-board

14

Arduino friendly!







# Arduino setup

### **Install Arduino**

### Legacy IDE (1.8.X)



### Arduino IDE 1.8.19

The open-source Arduino Software (IDE) makes it easy to write code and upload it to the board. This software can be used with any Arduino board.

Refer to the **Getting Started** page for Installation instructions.

### SOURCE CODE

Active development of the Arduino software is **hosted by GitHub**. See the instructions for **building the code**. Latest release source code archives are available **here**. The archives are PGP-signed so they can be verified using **this** gpg key.

### DOWNLOAD OPTIONS Windows Win 7 and newer Windows ZIP file Windows app Win 8.1 or 10 Get Linux 32 bits Linux 64 bits Linux ARM 32 bits Linux ARM 64 bits Mac OS X 10.10 or newer Release Notes Checksums (sha512)



https://www.arduino.cc/en/software

## Arduino for ST Nucleo: add source URL

Add source for STMicroelectronics boards, so that you will be able to install the tools

- File  $\rightarrow$  Preferences
- Add stm32duino URL

| Preferences                                                                                                                      |                                                    | ×      |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------|--|--|--|
| Settings Network                                                                                                                 |                                                    |        |  |  |  |
| Sketchbook location:                                                                                                             |                                                    |        |  |  |  |
| C: \Users \ptosato \Documents                                                                                                    | s\Arduino                                          | Browse |  |  |  |
| Editor language:                                                                                                                 | System Default v (requires restart of Arduino)     |        |  |  |  |
| Editor font size:                                                                                                                | 13                                                 |        |  |  |  |
| Interface scale:                                                                                                                 | Automatic 100 - % (requires restart of Arduino)    |        |  |  |  |
| Theme:                                                                                                                           | Default theme $\lor$ (requires restart of Arduino) |        |  |  |  |
| Show verbose output during: 🗹 compilation 🔽 upload                                                                               |                                                    |        |  |  |  |
| Compiler warnings:                                                                                                               | None 🗸                                             |        |  |  |  |
| Display line numbers                                                                                                             | Enable Code Folding                                |        |  |  |  |
| Verify code after upload                                                                                                         | Use external editor                                |        |  |  |  |
| Check for updates on sta                                                                                                         | artup Save when verifying or uploading             |        |  |  |  |
| Use accessibility features                                                                                                       |                                                    |        |  |  |  |
| Additional Boards Manager URLs: n,https://github.com/stm32duino/BoardManagerFiles/raw/main/package_stmicroelectronics_index.json |                                                    |        |  |  |  |
| More preferences can be edited directly in the file                                                                              |                                                    |        |  |  |  |
| C: \Users \ptosato \Documents \ArduinoData \preferences.txt                                                                      |                                                    |        |  |  |  |
| (edit only when Arduino is not                                                                                                   | t running)                                         |        |  |  |  |
|                                                                                                                                  | ОК                                                 | Cancel |  |  |  |

## Arduino for ST Nucleo: install the toolchain

Add the boards needed, i.e. STM32 based boards

- Tools → Board → Board
   Manager
- Select Contributed
- Install STM32 MCU based boards
- Arduino will install the tools needed to work with such boards.
   It might take a while...

| 🥯 Boards Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | × |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Type Contributed V Filter your search           by<br>Boa<br>Arduino       Filter your search         Dy<br>Boa<br>Arduino       pact         On<br>On<br>Contributed<br>Partner<br>Arduino@Heart       pact         1.0.1 V       Install                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ^ |
| STM32 MCU based boards<br>by STMicroelectronics version 2.3.0 INSTALLED<br>Boards included in this package:<br>Nucleo-144, Nucleo-64, Nucleo-32, Discovery, Eval, STM32MP1 series coprocessor, Generic STM32F0 series, Generic STM32F1<br>series, Generic STM32F2 series, Generic STM32F3 series, Generic STM32F4 series, Generic STM32F7 series, Generic STM32G0<br>series, Generic STM32G4 series, Generic STM32H7 Series, Generic STM32L0 series, Generic STM32L1 series, Generic STM32L4<br>series, Generic STM32L5 series, Generic STM32U5 series, Generic STM32WB series, Generic STM32WL series, 3D printer boards,<br>Blues Wireless boards, Elecgator boards, Electronic speed controllers, Garatronic-McHobby, Generic Flight Controllers, LoRa<br>boards, Midatronics boards.<br>Online Help<br>More Info |   |
| STM8 MCU based boards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~ |
| Close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : |

## Arduino for ST Nucleo: select the right board

| 🥯 s    | ketch_nov14a  | Arduino 1.8.19 (Windows Store 1.8.57.0)    |              |                                                                                   |   | _               |          | ×      |
|--------|---------------|--------------------------------------------|--------------|-----------------------------------------------------------------------------------|---|-----------------|----------|--------|
| File E | dit Sketch To | ols Help                                   |              |                                                                                   |   |                 |          |        |
|        |               | Auto Format                                | Ctrl+T       |                                                                                   |   |                 |          | Ø      |
|        |               | Archive Sketch                             |              |                                                                                   |   |                 |          |        |
| ske    | etch_nov14a   | Fix Encoding & Reload                      |              |                                                                                   |   |                 |          |        |
| 1      | #include      | Manage Libraries                           | Ctrl+Shift+I |                                                                                   |   |                 |          |        |
| 2      | #includ(      | Serial Monitor                             | Ctrl+Shift+M |                                                                                   |   |                 |          |        |
| 3      |               | Serial Plotter                             | Ctrl+Shift+L |                                                                                   |   |                 |          |        |
| 5      | MCP342x       |                                            |              |                                                                                   |   |                 |          |        |
| 6      | noroiza       |                                            |              |                                                                                   |   |                 |          |        |
| 7      | int htr       | Board: "Nucleo-64"                         | ;            | Boards Manager                                                                    |   |                 |          |        |
| 8      | int htr       | Board part number: "Nucleo F401RE"         | 3            | Arduino AVR Boards                                                                | > |                 |          |        |
| 9      | const fi      | U(S)AKT support: Enabled (generic Serial)  | ,            | ESP32 Arduino                                                                     | > |                 |          |        |
| 11     | const i       | USB support (if available): "None"         | 2            | ESP8266 Boards (2.7.4)                                                            | > |                 |          |        |
| 12     | const fi      | USB speed (if available): "Low/Full Speed" | 2            | STM32 boards groups (Board to be selected from Tools submenu 'Board part number') |   | Nucleo-144      |          |        |
| 13     |               | Optimize: "Smallest (-Os default)"         | >            |                                                                                   | • | Nucleo-64       |          |        |
| 14     |               | Debug symbols and core logs: "None"        | >            |                                                                                   |   | Nucleo-32       |          |        |
| 15E    | void set      | C Runtime Library: "Newlib Nano (default)" | >            |                                                                                   |   | Discovery       |          |        |
| 17     | pinMod        | Upload method: "Mass Storage"              | >            |                                                                                   |   | Eval            |          |        |
| 18     | Wire.1        | Port                                       | >            |                                                                                   |   | STM32MP1 series | s copro  | cessor |
| 19     | Seria:        | Get Board Info                             |              |                                                                                   |   | Generic STM32F0 | ) series | 000001 |
| 20     |               |                                            |              |                                                                                   |   | Generic STM32F1 | series   |        |

## Hello World!

```
void setup() {
   // initialize digital pin LED_BUILTIN as an output.
   pinMode(LED_BUILTIN, OUTPUT);
}
```

| 0    | 😳 Blink   Arduino 1.8.19 (Windows Store 1.8.57.0) |              |    |                         |     |                          |      |  |  |
|------|---------------------------------------------------|--------------|----|-------------------------|-----|--------------------------|------|--|--|
| File | Edit Sketch                                       | Tools Help   |    |                         |     |                          |      |  |  |
|      | New                                               | Ctrl+N       |    |                         |     |                          |      |  |  |
|      | Open                                              | Ctrl+0       |    |                         |     |                          |      |  |  |
|      | Open Recent                                       | ;            |    |                         |     |                          |      |  |  |
|      | Sketchbook                                        | 3            | di | gital pin 13, on 1      | MKI | R1000 on pin 6. LED      | BUIL |  |  |
|      | Examples                                          | ;            |    | Δ                       |     | n board is used.         | -    |  |  |
|      | Close                                             | Ctrl+W       |    | Built-in Examples       |     | rd LED is connected      | to o |  |  |
|      | Save                                              | Ctrl+S       |    | 01.Basics               | 2   | AnalogReadSerial         |      |  |  |
|      | Save As                                           | Ctrl+Shift+S |    | 02.Digital              |     | BareMinimum              |      |  |  |
|      |                                                   | 0.1.01% P    |    | 03.Analog               | 2   | Blink                    |      |  |  |
|      | Page Setup                                        | Ctrl+Shift+P |    | 04.Communication        | 2   | DigitalReadSerial        |      |  |  |
|      | Print                                             | Ctrl+P       |    | 05.Control              | 2   | Fade                     |      |  |  |
|      | Preferences                                       | Ctrl+Comma   |    | 06.Sensors              | 2   | ReadAnalogVoltage        |      |  |  |
|      | 0.11                                              | 01.0         |    | 07.Display              | >   |                          |      |  |  |
| 1.5  | Quit                                              | Ctrl+Q       |    | 08.Strings              | >   |                          |      |  |  |
| 20   | This e                                            | xample code  |    | 09.USB                  | >   | in.                      |      |  |  |
| 21   |                                                   |              |    | 10.StarterKit_BasicKit  | >   | /                        |      |  |  |
| 22   | https://www.ardui                                 |              |    | 11.ArduinoISP           | >   | <u>tInExamples/Blink</u> |      |  |  |
| 24   | ~/                                                |              |    | Evappelas for any board |     |                          |      |  |  |
| 25   | // the s                                          | etup functi  |    | Arduino ISON            | >   | press reset or power     | the  |  |  |

### Codebase

## https://gitlab.fbk.eu/ptosato/inspyre23



# **Back to the HW**





## **Measure the resistance**

$$V = IR$$

$$V_{ADC} = I_{sensor} R_{FB}$$

$$R_{sensor} = \frac{R_{FB} V_{ref}}{V_{ADC}}$$

$$V_{ref} = 1.024 V$$
 $R_{FB} = 1 k\Omega, 1 M\Omega$ 

### **Code setup**







### **MCP3428**



### Channel This chip has 4 channels



### Resolution

Number of bits used by the digitizer, should use 16 bits



### Gain

An internal amplifier can further amplify the signal (1 to 8x)

### 4.9 Digital Output Codes and Conversion to Real Values

### 4.9.1 DIGITAL OUTPUT CODE FROM DEVICE

The digital output code is proportional to the input voltage and PGA settings. The output data format is a binary two's complement. With this code scheme, the MSB can be considered a sign indicator. When the MSB is a logic '0', the input is positive. When the MSB is a logic '1', the input is negative. The following is an example of the output code:

(a) for a negative full scale input voltage: 100...000

Example: (CHn+ - CHn-) •PGA = -2.048V

(b) for a zero differential input voltage: 000...000

Example: (CHn+ - CHn-) = 0

(c) for a positive full scale input voltage: 011...111

Example: (CHn+ - CHn-) • PGA = 2.048V

The MSB (sign bit) is always transmitted first through the  $I^2C$  serial data line. The resolution for each conversion is 16, 14, or 12 bits depending on the conversion rate selection bit settings by the user.

The output codes will not roll-over even if the input voltage exceeds the maximum input range. In this case, the code will be locked at 0111...11 for all voltages greater than (V<sub>REF</sub> - 1 LSB)/PGA and 1000...00 for voltages less than -V<sub>REF</sub>/PGA. Table 4-2 shows an example of output codes of various input levels for 16-bit conversion mode. Table 4-3 shows an example of minimum and maximum output codes for each conversion rate option.

The number of output code is given by:

### EQUATION 4-2:

### Number of Output Code =

=  $(Maximum Code + 1) \times PGA \times \frac{(CHn+-CHn-)}{2.048V}$ 

Where:

See Table 4-3 for Maximum Code

The LSB of the data conversion is given by:

### EQUATION 4-3:



Table 4-1 shows the LSB size of each conversion rate setting. The measured unknown input voltage is obtained by multiplying the output codes with LSB. See the following section for the input voltage calculation using the output codes.

### TABLE 4-1: RESOLUTION SETTINGS VS. LSB

| Resolution Setting | LSB     |  |  |
|--------------------|---------|--|--|
| 12 bits            | 1 mV    |  |  |
| 14 bits            | 250 µV  |  |  |
| 16 bits            | 62.5 µV |  |  |

#### TABLE 4-2: EXAMPLE OF OUTPUT CODE FOR 16 BITS (NOTE 1, NOTE 2)

| Input Voltage:<br>[CHn+ - CHn-] • PGA | Digital Output Code                     |
|---------------------------------------|-----------------------------------------|
| ≥ V <sub>REF</sub>                    | 0111111111111111                        |
| V <sub>REF</sub> - 1 LSB              | 0111111111111111                        |
| 2 LSB                                 | 000000000000000000000000000000000000000 |
| 1 LSB                                 | 0000000000000001                        |
| 0                                     | 00000000000000000                       |
| -1 LSB                                | 1111111111111111                        |
| -2 LSB                                | 1111111111111111                        |
| - V <sub>REF</sub>                    | 1000000000000000                        |
| < -V <sub>REF</sub>                   | 1000000000000000                        |

Note 1: MSB is a sign indicator: 0: Positive input (CHn+ > CHn-)

1: Negative input (CHn+ < CHn-)

 Output data format is binary two's complement.

| TABLE 4-3: | MINIMUM AND MAXIMUM |
|------------|---------------------|
|            | OUTPUT CODES (NOTE) |

| Resolution<br>Setting | Data Rate | Minimum<br>Code | Maximum<br>Code |  |  |
|-----------------------|-----------|-----------------|-----------------|--|--|
| 12                    | 240 SPS   | -2048           | 2047            |  |  |
| 14                    | 60 SPS    | -8192           | 8191            |  |  |
| 16                    | 15 SPS    | -32768          | 32767           |  |  |

Note: Maximum n-bit code =  $2^{N-1} - 1$ Minimum n-bit code =  $-1 \times 2^{N-1}$ 

## **Code for MCP3428**

Select Tools → Library Manager to search for additional libraries.

After installation you can find some examples ready to be used.


## **Code for MCP3428**

```
const float adc res = 62.5E-6;
long value = 0;
MCP342x::Config status;
MCP342x::Gain gain = MCP342x::gain1;
// read heater current - channel 1
uint8 t err = adc.convertAndRead(MCP342x::channel4, MCP342x::oneShot,
        MCP342x::resolution16, gain, 1000000, value, status);
lsb = adc_res / 1;
float htr1 i = value * lsb / 0.3 / 200;
// read sensor - channel 1
gain = MCP342x::gain8;
err = adc.convertAndRead(MCP342x::channel1, MCP342x::oneShot,
        MCP342x::resolution16, gain, 1000000, value, status);
```

```
lsb = adc_res / 8;
sensor_raw = value*lsb;
float sen1_r = ...
```

# **MCP4716**



### Channel

This chip has only one channel, but there are two on the board.



### Resolution

Only 10 bits, but more than enough



### Gain

There is an internal amplifier, but we use the external one that is more capable







8-/10-/12-Bit Voltage Output Digital-to-Analog Converter with EEPROM and I<sup>2</sup>C<sup>TM</sup> Interface

#### Features:

- Output Voltage Resolutions:
- 12-bit: MCP4726
- 10-bit: MCP4716
- 8-bit: MCP4706
- Rail-to-Rail Output
- Fast Settling Time of 6 µs (typical) DAC Voltage Reference Options:
- V<sub>DD</sub>
- V<sub>RFF</sub> Pin
- Output Gain Options:
- Unity (1x)
- 2x, only when V<sub>REE</sub> pin is used as voltage source
- Nonvolatile Memory (EEPROM);
- Auto Recall of Saved DAC register setting
- Auto Recall of Saved Device Configuration (Voltage Reference, Gain, Power-Down)
- Power-Down modes:
- Disconnects output buffer
- Selection of V<sub>OUT</sub> pull-down resistors (640 k $\Omega$ , 125 k $\Omega$ , or 1 k $\Omega$ )
- Low-Power Consumption:
- Normal Operation: 210 µA typical
- Power-Down Operation: 60 nA typical (PD1:PD0 = 11)
- Single-Supply Operation: 2.7V to 5.5V
- I<sup>2</sup>C<sup>™</sup> Interface:
- Eight Available Addresses
- Standard (100 kbps), Fast (400 kbps), and High-Speed (3.4 Mbps) modes
- · Small 6-lead SOT-23 and DFN (2x2) Packages
- Extended Temperature Range: -40°C to +125°C

#### Applications:

- Set Point or Offset Trimming
- Sensor Calibration
- Low-Power Portable Instrumentation
- PC Peripherals

#### Package Types



#### Description:

The MCP4706/4716/4726 are single channel 8-bit, 10-bit, and 12-bit buffered voltage output Digital-to-Analog Converters (DAC) with nonvolatile memory and an I<sup>2</sup>C serial interface. This family will also be referred to as MCP47X6.

The V<sub>RFF</sub> pin or the device V<sub>DD</sub> can be selected as the DAC's reference voltage. When VDD is selected, VDD is connected internally to the DAC reference circuit. When the V<sub>RFF</sub> pin is used, the user can select the output buffer's gain to 1 or 2. When the gain is 2, the V<sub>REF</sub> pin voltage should be limited to a maximum of V<sub>DD</sub>/2.

The DAC register value and Configuration bits can be programmed to nonvolatile memory (EEPROM). The nonvolatile memory holds the DAC register and Configuration bit values when the device is powered off. A device Reset (such as a Power-on Reset) latches these stored values into the volatile memory.

Power-Down modes enable system current reduction when the DAC output voltage is not required. The VOLT pin can be configured to present a low, medium, or high resistance load.

These devices have a two-wire I<sup>2</sup>C<sup>™</sup> compatible serial interface for standard (100 kHz), fast (400 kHz), or High-Speed (3.4 MHz) mode.

These devices are available in small 6-pin SOT-23 and DFN 2x2 mm packages.

# **Code for MCP4716**

There is no library in the Library Manager, so we may ask Google for that.

In this case you can download the code from GitHub and paste it in the folder where you have your Arduino code. Google

mcp4716 arduino

0

🗙 | 🎍 🧰 🔍

petticrew

MCP4716\_Arduino

GitHub https://github.com > jdpetticrew > MCP4716\_Arduino

#### An Arduino Library to control a MCP4716 10bit DAC via i2c.

This library is a **Arduino** library for setting the output voltage of an **MCP4716** DAC. This library has been tested with an **Arduino** Uno.

https://github.com > uChip

### Arduino library for MCP4706, MCP4716 and MCP4726 DACs

This is an **Arduino** library for interfacing to Microchip MCP47X6 series of DACs. The following devices are supported. MCP4706 8-bit **MCP4716** 10-bit MCP4726 ...

#### Microchip Technology

https://ww1.microchip.com > DeviceDoc PDF

### MCP4706/MCP4716/MCP4726

The MCP4706, **MCP4716**, and MCP4726 devices are single channel voltage output 8-bit, 10-bit, and 12-bit. DAC devices with nonvolatile memory (EEPROM) and an I2C ... 86 pages

### Images for mcp4716 arduino



# **Code for MCP4716**

```
uint8_t address_DAC1 = 0x63;
uint8_t address_DAC2 = 0x61;
```

$$LSB = \frac{3.3}{1023} = 0.0032 \, V$$

```
MCP4716 dac1 = MCP4716(address_DAC1);
MCP4716 dac2 = MCP4716(address_DAC2);
```

```
uint16_t dacOut1 = 50; // 160mV -> around 320mV on the heater
uint16_t dacOut2 = 100; // 320mV -> 650mV
```

```
dac1.setVout(dacOut1);
dac2.setVout(dacOut2);
```

# Other constants and connections

| Signal                     | Arduino<br>Port |
|----------------------------|-----------------|
| LED1                       | D11             |
| LED2                       | D12             |
| EN                         | D9              |
| Heater voltage (channel 1) | A4              |
| Heater voltage (channel 2) | A5              |
| SW (channel 1)             | D10             |
| SW (channel 2)             | D8              |

| Signal                        | MCP3428<br>channel |
|-------------------------------|--------------------|
| Heater current (channel 1)    | 4                  |
| Heater current (channel 2)    | 3                  |
| Sensor resistance (channel 1) | 1                  |
| Sensor resistance (channel 2) | 2                  |
| Resistance                    | SW value           |
| 1 kOhm                        | HIGH               |
| 1MOhm                         | LOW                |