SYMMETRIES IN PHYSICS A BRIEF ACCOUNT

AD POLOSA — SAPIENZA UNIVERSITY OF ROME

MATHEMATICS IS THAT PART OF PHYSICS IN WHICH EXPERIMENTS ARE LESS EXPENSIVE"

Assumption: the absolute position is non-observable.

V = Interaction energy independent of O.

⇒ V invariant under space-translations ⇒ $V = V(\vec{r}_1 - \vec{r}_2)$

This means: invariance under space translations \Rightarrow conservation of total momentum.

Non-Observables	Symmetry Transformation	Conservation Law
Absolute Spatial Position	$\vec{r} \rightarrow \vec{r} + \vec{d}$	Momentum
Absolute Spatial Direction	$r_i \to R_{ij} r_j$	Angular Momentum
Absolute Velocity	$x_{\mu} \rightarrow L_{\mu\nu} x_{\nu}$	Generators of Lorentz Group
Absolute Right/Left	$\vec{r} \rightarrow - \vec{r}$	Parity
Absolute Sign of Charge	$e \rightarrow -e$	Charge Conjugation
Absolute Time	$t \rightarrow t + \delta$	Energy

The gravity acceleration \vec{g} , pointing down, is an 'emergent' notion. This situation is not symmetric at all.

Indeed gravity acceleration vectors are not parallel. They aim to the center of the earth.

ROTATION INVARIANCE IS (PARTIALLY) BROKEN

Near the surface of earth we have $\overrightarrow{F} = m\overrightarrow{g}$, but \overrightarrow{g} is fixed, and points down. Then \overrightarrow{F} is *not invariant* under *all rotations*, but only under those rotations around the vertical axis.

However, Newton's law of gravitation is rotation invariant.

(here $m\vec{a}$ corresponds to a rotationally invariant term)

$$F = G \frac{mM}{r^2}$$

where *r* is the distance to the center of the earth.

This is a symmetry of a fundamental law of physics.

VECTORS AND ROTATIONS

A vector \vec{F} is a set of numbers F_i which has given transformation properties under *rotations*

$$F_i \to F'_i = \sum_{j=1}^3 R_{ij} F_j$$

$$R = \begin{pmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$$

The equation $\overrightarrow{F} = m\overrightarrow{a}$ is a *relation between vectors*, both transforming with *R*. This equation is rotation invariant if both \overrightarrow{a} , \overrightarrow{F} transform as a vectors (no \overrightarrow{g} pointing up)

$$\overrightarrow{F'} = m\overrightarrow{a'}$$

RECOVERING ROTATION INVARIANCE

Invariance under rotations is *recovered* if in place of $\overrightarrow{F} = m\overrightarrow{g}$ we write \overrightarrow{F} as the gradient of the gravity potential

$$m\vec{a} = -\overrightarrow{\nabla}\left(G\frac{mM}{r}\right)$$

where the gradient operator is

$$\overrightarrow{\nabla} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$$

$$\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos\theta \\ -\sin\theta \end{pmatrix}$$
$$\frac{R(\theta)}{a} \quad \vec{a} \quad \vec{a}'$$

The transpose works as the inverse transformation

$$\begin{aligned} \tilde{R}(\theta) \\ \left(\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right) \begin{pmatrix} x' \\ y' \end{pmatrix} &= \begin{pmatrix} x \\ y \end{pmatrix} \end{aligned}$$

 $x = \cos \theta x' - \sin \theta y'$ $y = \sin \theta x' + \cos \theta y'$

$$\frac{\partial}{\partial x'} = \frac{\partial x}{\partial x'} \frac{\partial}{\partial x} + \frac{\partial y}{\partial x'} \frac{\partial}{\partial y} = \cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y}$$
$$\frac{\partial}{\partial y'} = \frac{\partial x}{\partial y'} \frac{\partial}{\partial x} + \frac{\partial y}{\partial y'} \frac{\partial}{\partial y} = -\sin \theta \frac{\partial}{\partial x} + \cos \theta \frac{\partial}{\partial y}$$

Using the chain rule for derivatives we got

$$\underbrace{\begin{pmatrix}\cos\theta & \sin\theta\\-\sin\theta & \cos\theta\end{pmatrix}}_{R} \begin{pmatrix}\frac{\partial}{\partial x}\\\frac{\partial}{\partial y}\end{pmatrix} = \begin{pmatrix}\frac{\partial}{\partial x'}\\\frac{\partial}{\partial y'}\end{pmatrix}_{R}$$

which is the same matrix R rotating \vec{a} – the extension to three dimensions follows.

Apply the same *R* to both sides of the equation for the gravity acceleration

$$m R_{ij} a_j = -R_{ij} \nabla_j \left(G \frac{m M}{r} \right)$$
$$\longrightarrow (m M)$$

$$m \vec{a}' = - \vec{\nabla}' \left(G \frac{m m}{r} \right)$$

Notice that the distance r is invariant under rotation being

(scalar product)
$$r^2 = \vec{r} \cdot \vec{r} = \sum_i r_i r_i$$

 $r'^2 = \sum_i \sum_j R_{ij} r_j \sum_k R_{ik} r_k = \sum_{i,j,k} r_j (\tilde{R})_{ji} R_{ik} r_k = r^2$

The equation for the gravity acceleration reads the same in every rotated system.

$$m\,\vec{a}' = -\,\vec{\nabla}' \left(G\frac{m\,M}{r}\right)$$

ROTATION INVARIANCE OF MAXWELL EQUATIONS

THE 'VECTOR' PRODUCT OF TWO VECTORS

$$(\overrightarrow{A} \times \overrightarrow{B})_i \equiv \sum_{j,k=1}^3 \epsilon_{ijk} A_j B_k$$

$\epsilon_{123} = 1$	$\epsilon_{132} = -1$
$\epsilon_{231} = 1$	$\epsilon_{213} = -1$
$\epsilon_{312} = 1$	$\epsilon_{321} = -1$

$$(\overrightarrow{A} \times \overrightarrow{B})_1 = (A_2 B_3 - A_3 B_2)$$
$$(\overrightarrow{A} \times \overrightarrow{B})_2 = (A_3 B_1 - A_1 B_3)$$
$$(\overrightarrow{A} \times \overrightarrow{B})_3 = (A_1 B_2 - A_2 B_1)$$

Maxwell's equations are also invariant under rotations, e.g.

$$\overrightarrow{\nabla} \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$

 $R_{i'i} B_i = B'_{i'}$

$$R_{i'i}(\epsilon_{ijk} \nabla_j E_k) = R_{i'i} \epsilon_{ijk} (\nabla'_{j'} R_{j'j}) (E'_{k'} R_{k'k}) = \overrightarrow{\nabla'} \times \overrightarrow{E'}$$

since
$$\epsilon_{ijk} R_{i'i} R_{j'j} R_{k'k} = \det(R) \epsilon_{i'j'k'} = \epsilon_{i'j'k'}$$

 $\overrightarrow{\nabla'} \times \overrightarrow{E'} = -\frac{\partial \overrightarrow{B'}}{\partial t}$

PARITY

We can define *parity P* as

$$P\overrightarrow{E}(\overrightarrow{x},t) = -\overrightarrow{E}(-\overrightarrow{x},t)$$

This means that $\overrightarrow{\nabla} \times \overrightarrow{E}$ is left invariant by parity. If the magnetic field were invariant under parity (an axial-vector, parity even) we would say that the Maxwell equation at hand is also *parity-invariant*. Indeed

$\overrightarrow{B} = \overrightarrow{\nabla} \times \overrightarrow{A}$

is parity invariant, \overrightarrow{A} being a vector – the 'vector potential'. Recall that $\overrightarrow{E} = -\partial \overrightarrow{A}/\partial t - \nabla \phi$ and \overrightarrow{E} is a vector (parity odd).

Also the other three M. equations are parity–invariant, as is the case for gravity law.

$$m\vec{a} = -\overrightarrow{\nabla}\left(G\frac{mM}{r}\right)$$

This equation is invariant under parity because $\overrightarrow{\nabla}$ flips under parity. N.B. $\overrightarrow{F} = m\overrightarrow{g}$ breaks parity (so as rotations).

It seems that the *fundamental laws* of physics *do not care about parity* (are parity-invariant), i.e. do not care about left and right, or up and down.

$$P = \text{Mirror Symmetry} \times R_z(\pi)$$

Since we have rotational invariance, the *mirror* is indeed performing a *parity operation*.

Is the world in the mirror allowed by physics?

Imagine a watch with the seconds hand only. Call it 'right' if the hand rotates clockwise (as it is usually the case!). Set the watch in front of a mirror and look in the mirror. You will see a 'left' watch.

PARITY VIOLATION

A *neutrino* with *left helicity* is sort of a left watch. Let it approach a mirror. The image in the mirror is a *right neutrino*. The neutrino is produced e.g. in nuclear β -decay. Are the laws governing neutrino production invariant under parity? **(CN Yang & TD Lee)**

 \mathcal{V}_{I} "see" Kuis.

WEAK INTERACTION CARES ABOUT LEFT GRIGHT

Neutrinos are neutral particles (almost massless). Despite its name, the `charge conjugation operation C`, makes changes on neutrinos: their handedness

 $(C\nu_L) \text{ is the anti-}\nu = \bar{\nu}$ $(C\nu_L) \text{ is } R \Rightarrow \bar{\nu}_R$

However we still do not know if neutrinos are of the `Dirac-kind`, $\nu \neq \overline{\nu}$, or of the `Majorana-kind`, $\nu = \overline{\nu}$ (same particle in two handedness states). A non-zero mass Majorana neutrino can (rarely) flip its handedness. Electrons etc., like neutrinos, have handedness too.

$$\pi^+ \to e^+ (\nu_e)_L$$

almost forbidden because neutrino has to be L and anti-electron has to be R, e_R^+ (electron, being almost massless wrt to pion, behaves like ν and should be L). On the other hand, conservation of angular momentum requires e_L^+ and this almost kills the decay.

 $\pi^+ \to \mu^+ (\nu_\mu)_L$

this instead is allowed because μ is not much lighter than π

All this means we are giving an **absolute** value to the meaning of left/right.

VIOLATION OF A SYMMETRY ARISES WHENEVER WHAT WAS THOUGHT TO BE NON-OBSERVABLE TURNS OUT TO BE OBSERVABLE!"

UP-DOWN ASYMMETRY

It looks like the neutrino never had left/right symmetry in the first place. Maybe in the 'final' theory, handedness will be spontaneously broken as opposed to the contrived situation in which symmetry is broken explicitly.

food, ~ uniformly distributed along the circle – break the symmetry or starve...

CHARGE CONJUGATION

The rate counting below can differentiate e^- from e^+ . Thus there is an absolute difference between the opposite signs of charges even though we are led to think to the sign of electric charge as merely conventional: electron is negative because we happened to assign + to the proton.

$$\frac{\Gamma(K_L^0 \to e^+ + \pi^- + \nu)}{\Gamma(K_L^0 \to e^- + \pi^+ + \bar{\nu})} \approx 1.0065$$

This means we are giving an **absolute** value to the meaning of +/- electric charge.

TIME REVERSAL

Another (discrete) symmetry is time-reversal

$$\vec{x} \to \vec{x} \qquad t \to -\vec{v}$$
$$\vec{v} = \frac{d\vec{x}}{dt} \to -\vec{v}$$
$$\vec{a} = \frac{d\vec{v}}{dt} \to \vec{a}$$

Consider Newton law $\overrightarrow{F} = m\overrightarrow{a}$ with \overrightarrow{F} derivable from a potential $V(\overrightarrow{x})$ as $\overrightarrow{F} = -\overrightarrow{\nabla}V(\overrightarrow{x})$.

$$m\vec{a} = -\overrightarrow{\nabla}V(\vec{x})$$

Is invariant under time-reversal (not in presence of friction).

There are no mirrors for *time-reversal*: look at the movie backwards

If the fundamental laws of physics are invariant under time-reversal, the motion in the reversed movie is a *possible motion*. Under time-reversal the charge density ρ does not change sign. Since $\overrightarrow{\nabla} \cdot \overrightarrow{E} = \rho$ then $\overrightarrow{E}(\overrightarrow{x}, t) \rightarrow \overrightarrow{E}(\overrightarrow{x}, -t)$.

On the other hand

$$\vec{E} = -\vec{\nabla}\phi - \frac{\partial\vec{A}}{\partial t}$$

Thus $\overrightarrow{A}(\overrightarrow{x}, t) \rightarrow -\overrightarrow{A}(\overrightarrow{x}, -t)$ and therefore $\overrightarrow{B}(\overrightarrow{x}, t) \rightarrow -\overrightarrow{B}(\overrightarrow{x}, -t)$ (since one can show that $\Box \phi = -\rho$ in the 'Lorenz gauge'). Thus

$$\overrightarrow{\nabla} \times \overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t}$$

is invariant under time-reversal! (so are the other ones)

It seems that the *fundamental laws* of physics *do not care about time-reversal* (are time-reversal-invariant), i.e. the backwards movie is always possible.

However the physics of fundamental interactions is surprising again: there are T-violations, or CP-violations (CPT is conserved) in weak interactions!

These facts are the backbone of the *Standard Model* of particle physics.

In the symmetric phase, electrons, quarks and mediators in the Standard Model are considered massless. Upon spontaneous breaking of the electroweak symmetry they can acquire mass.

Massless quarks & leptons

Massive & massless gauge vectors

Higgs particle

 H^0