Accelerating the future

Massimo.Ferrario@LNF.INFN.IT

Accelerators installed worldwide

Total sales of accelerators is ~US\$5B annually

About 47,000 systems have been sold, > 40,000 still in operation today

More than 100 vendors worldwide are in the accelerator business.

Vendors are primarily in US, Europe and Japan, but growing in China, Russia and India

-Accelerators for Americas Future Report, pp. 4, DoE, USA, 2011

Accelerators installed worldwide

-Accelerators for Americas Future Report, pp. 4, DoE, USA, 2011

Domestic Accelerators

FIGURE 3. ERNEST LAWRENCE, EDWIN MCMILLAN, AND LUIS ALVAREZ (left to right) admire a finished Chromatron. (Ernest O. Lawrence papers, BANC MSS 2005/200c, oversize box 3. Courtesy of the Bancroft Library, University of California, Berkeley.)

High Energy accelerators

$$F_{Lorentz} = q v B = F_{centripital} = \frac{mv^2}{\rho}$$
$$\Rightarrow \rho = \frac{mv}{qB} = \frac{p}{qB}$$

ректис

Equilibrium radius

Energy lost by emission of radiation

Synchrotron light sources

Volume Rendering of an Herculaneum

The beam business

Images courtesy of Intel

The beam business: Accelerators in industry Robert W. Hamm, and Marianne E. Hamm

Citation: Physics Today 64, 6, 46 (2011); doi: 10.1063/1.3603918

Medical Accelerators

The Cosmos is a very large particle accelerator...but in uncontrolled conditions

Il diagramma di Livingstone

Energy of colliders is plotted in terms of the laboratory energy of particles colliding with a proton at rest to reach the same center of mass energy.

Fermi's Globatron: ~5000 TeV Proton beam 1954 the ultimate synchrotron

B_{max} 2 Tesla ρ 8000 km fixed target 3 TeV cm 170 G\$ 1994

$$\rho = \frac{p}{Bq} \cong \frac{E}{cqB}$$

What can we learn with bi en accelerator Jan 24 195 Multiple production N,N V Mult prost NT Strange particles (duy, mon - Double muleon 1/ Generalities tune > M& discoveries

Touschek's Anello Di Accumulazione (ADA) 1961 the first e+e- Collider

Effects of Terrestrial Tides on the LEP Beam Energy

L. Arnaudon, R. Assmann, A. Blondel, B. Dehning, G.E. Fischer[‡], P. Grosse-Wiesmann, A. Hofmann, R. Jacobsen, J.P. Koutchouk, J. Miles, R. Olsen, M. Placidi, R. Schmidt, J. Wenninger

Figure 2: Tidal deformation of the Earth crust due to the presence of the moon. One tide bulge is formed in the direction of the moon and another one just opposite of it. The changes in gravity associated to the tidal deformations Δg are indicated for an observer at a latitude of about 45°. The sun tides have not been drawn. They create a tide bulge along the plane of the ecliptic. Their amplitude is 45% of the moon tides.

Beam energy daily variation

←Full Moon

Hawking: the Solartron Towards the Planck scale

Without further novel technology, we will eventually need an accelerator as large as Hawking expected.

"The Universe in a Nutshell", by Stephen William Hawking, Bantam, 2001

Accelerator on a Chip?

SLAC Now and Tomorrow?

Conventional RF accelerating structures

Typical breakdown and pulse heating damage is standing-wave structure cell

Plasma Acceleration

Surface charge density

 $\sigma = e n \, \delta x$

Surface electric field

$$E_x = -\sigma/\epsilon_0 = -e \, n \, \delta x/\epsilon_0$$

Restoring force

$$m \frac{d^2 \delta x}{dt^2} = e E_x = -m \omega_p^2 \delta x$$

Plasma frequency

$$\omega_{\rm p}^{\ 2} = \frac{{\rm n} e^2}{\epsilon_0 {\rm m}}$$

Plasma oscillations

$$\delta x = (\delta x)_0 \cos{(\omega_p t)}$$

Breakdown limit?

$$E_0 = \frac{m_e c \,\omega_p}{e} \approx 100 [\frac{GeV}{m}] \cdot \sqrt{n_0 [10^{18} cm^{-3}]}$$

Laser Plasma-Acceleration (Internal Injection)

Laser Plasma-Acceleration (Internal Injection)

This accelerator fits into a human hair!

Plasma capillary

Courtesy of M. P. Anania, A. Biagioni, D. Di Giovenale, F. Filippi, S. Pella

Capillary Discharge

PWFA vacuum chamber at SPARC LAB

BELLA: BErkeley Lab Laser Accelerator

BELLA Facility: state-of-the-art 1.3 PW-laser for laser accelerator science: >42 J in <40 fs (> 1PW) at 1 Hz laser and supporting infrastructure at LBNL

Critical HEP experiments:

- 10 GeV electron beam from <1 m LPA
- Staging LPAs
- Positron acceleration

Experiments at LBNL use the BELLA laser focused by a 14 m focal length off-axis paraboloid onto gas jet or capillary discharge targets

4.25 GeV beams have been obtained from 9 cm plasma channel powered by 310 TW laser pulses (15 J)

Diffraction - Self injection - Dephasing – Depletion

Colliding Laser Pulses Scheme

The first laser creates the accelerating structure, a second laser beam is used to heat electrons

loa

Colliding Laser Pulses Scheme

The first laser creates the accelerating structure, a second laser beam is used to heat electrons

lundi 3 juin 13

loa

Colliding Laser Pulses Scheme

The first laser creates the accelerating structure, a second laser beam is used to heat electrons

http://loa.ensta.fr/

loa

Stable Laser Plasma Accelerators

Free Electron Laser

X-FEL based on last 1-km of existing SLAC linac

XFEL first lasing – Hamburg May 2017

Electron source and acceleration

Long undulators chain

Beam separation

A Free Electron Laser is a device that converts a fraction of the electron kinetic energy into coherent radiation via a collective instability in a long undulator

$$\lambda_{rad} \approx \frac{\lambda_u}{2\gamma^2} \left(1 + \frac{K^2}{2} + \gamma^2 \vartheta^2 \right)$$

(Tunability - Harmonics)

Radiation Simulator – T. Shintake, @ http://www-xfel.spring8.or.jp/Index.htm

The FEL Applications

X-Rays have opened the Ultra-Small World X-FELs open the Ultra-Small and Ultra-Fast Worlds

Ultra-Small

Ultra-Fast

E. Muybridge at L. Stanford in 1878 disagree whether all feet leave the ground during gallop...

used spark photography to freeze this 'ultra-fast' process

E. Muybridge, *Animals in Motion*, ed. L. S. Brown (Dover Pub. Co., New York 1957) Courtesy Paul Emma (SLAC).

Experimental hall (Single Protein Imaging)

http://lcls.slac.stanford.edu/AnimationViewLCLS.aspx

Coulomb Explosion of Lysozyme (50 fs) Single Molecule Imaging with Intense X-rays

Atomic and molecular dynamics occur at the *fsec*-scale

J. Hajdu, Uppsala U.

https://www.asimmetrie.it/images/stories/archivio-numeri-passati-pdf/asimmetrie-6-HR.pdf

Thank for your attention